We present the magnetic properties and the 1H nuclear magnetic resonance dispersion profiles of Mn-ferrites-based compounds, as possible novel contrast agents (CAs) for magnetic resonance imaging (MRI). The samples consist of nanoparticles (NPs) with the magnetic core made of Mn(1+x)Fe(2−x)O4, obtained by the rapid decomposition of metalcarbonyl into a hot solvent containing an oxidizer and a coordinating surfactant; by this procedure, monodisperse capped NPs with different sizes have been obtained. We have performed structural and morphological investigation by x-ray powder diffraction and transmission electron microscopy techniques and SQUID magnetometry experiments to investigate the magnetic behaviour of the samples. As required for MRI applications using negative CAs, the samples are superparamagnetic at room temperature, having blocking temperatures in the range 14–80 K. The longitudinal r1 and transverse r2 nuclear relaxivities appear to vary strongly with the magnetic core size, their values being comparable to commercial compounds in the high-frequency range ν > 100 MHz. The experimental results suggest that our samples are suitable for high-frequency MRI imagers in general and in particular for the 3 T clinical imager, as indeed suggested by a recent report (Tromsdorf et al 2007 Nanoletters 7 2422).
A. Boni, M. Marinone, C. Innocenti, C. Sangregorio, M. Corti, A. Lascialfari, et al. (2008). Magnetic and relaxometric properties of Mn ferrites. JOURNAL OF PHYSICS. D, APPLIED PHYSICS, 41, 1-6 [10.1088/0022-3727/41/13/134021].
Magnetic and relaxometric properties of Mn ferrites
MARIANI, MANUEL;
2008
Abstract
We present the magnetic properties and the 1H nuclear magnetic resonance dispersion profiles of Mn-ferrites-based compounds, as possible novel contrast agents (CAs) for magnetic resonance imaging (MRI). The samples consist of nanoparticles (NPs) with the magnetic core made of Mn(1+x)Fe(2−x)O4, obtained by the rapid decomposition of metalcarbonyl into a hot solvent containing an oxidizer and a coordinating surfactant; by this procedure, monodisperse capped NPs with different sizes have been obtained. We have performed structural and morphological investigation by x-ray powder diffraction and transmission electron microscopy techniques and SQUID magnetometry experiments to investigate the magnetic behaviour of the samples. As required for MRI applications using negative CAs, the samples are superparamagnetic at room temperature, having blocking temperatures in the range 14–80 K. The longitudinal r1 and transverse r2 nuclear relaxivities appear to vary strongly with the magnetic core size, their values being comparable to commercial compounds in the high-frequency range ν > 100 MHz. The experimental results suggest that our samples are suitable for high-frequency MRI imagers in general and in particular for the 3 T clinical imager, as indeed suggested by a recent report (Tromsdorf et al 2007 Nanoletters 7 2422).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.