Although Bronsted-Lowry (B-L) sites in solids, such as zeolites, have been studied extensively, all previous investigations were conducted on a bulk (average) basis. In contrast, the imaging and distribution of B-L sites on atomic flat Al-rich chlorite are presented by using Scanning probe and Kelvin probe force microscopy. These techniques are used to correlate, at the nanoscale, the contrast due to the surface potential (related to the B-L proton) with the surface morphology and crystal chemistry. Quantum mechanical modeling (DFT) is consistent with the experimental results. Imaging of the distribution of B-L sites in solids and the existence of two-dimensional (2D) arrays of zeolitic-type B-L sites in chlorites is shown. The study demonstrates the general validity of the Bronsted-Lowry acid-base theory extended to pure solids without any solution medium. The experimental approach developed here can facilitate the search of B-L site architectures in minerals.

Valdre G., Tosoni S., Moro D. (2011). Zeolitic-type Bronsted-Lowry sites distribution imaged on clinochlore. AMERICAN MINERALOGIST, 96(10), 1461-1466 [10.2138/am.2011.3774].

Zeolitic-type Bronsted-Lowry sites distribution imaged on clinochlore

VALDRE', GIOVANNI;MORO, DANIELE
2011

Abstract

Although Bronsted-Lowry (B-L) sites in solids, such as zeolites, have been studied extensively, all previous investigations were conducted on a bulk (average) basis. In contrast, the imaging and distribution of B-L sites on atomic flat Al-rich chlorite are presented by using Scanning probe and Kelvin probe force microscopy. These techniques are used to correlate, at the nanoscale, the contrast due to the surface potential (related to the B-L proton) with the surface morphology and crystal chemistry. Quantum mechanical modeling (DFT) is consistent with the experimental results. Imaging of the distribution of B-L sites in solids and the existence of two-dimensional (2D) arrays of zeolitic-type B-L sites in chlorites is shown. The study demonstrates the general validity of the Bronsted-Lowry acid-base theory extended to pure solids without any solution medium. The experimental approach developed here can facilitate the search of B-L site architectures in minerals.
2011
Valdre G., Tosoni S., Moro D. (2011). Zeolitic-type Bronsted-Lowry sites distribution imaged on clinochlore. AMERICAN MINERALOGIST, 96(10), 1461-1466 [10.2138/am.2011.3774].
Valdre G.; Tosoni S.; Moro D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/112291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact