We study the performance of steepest descent (SD) and least mean square (LMS) algorithms applied to linear detection for multiple-input multiple-output (MIMO) systems in a correlated Rayleigh fading environment. By using random matrix theory, we first study stability for a fixed step size parameter. Then, we consider two always-stable channel-adaptive strategies for the choice of the step size and analytically evaluate their performance. Finally, we derive bounds on the mean value of misadjustment for the LMS algorithm.

A. Zanella, M. Chiani, M. Z. Win (2011). Statistical Analysis of Steepest Descend and LMS Detection Algorithms for MIMO Systems. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 60, 4667-4672 [10.1109/TVT.2011.2170185].

Statistical Analysis of Steepest Descend and LMS Detection Algorithms for MIMO Systems

ZANELLA, ALBERTO;CHIANI, MARCO;
2011

Abstract

We study the performance of steepest descent (SD) and least mean square (LMS) algorithms applied to linear detection for multiple-input multiple-output (MIMO) systems in a correlated Rayleigh fading environment. By using random matrix theory, we first study stability for a fixed step size parameter. Then, we consider two always-stable channel-adaptive strategies for the choice of the step size and analytically evaluate their performance. Finally, we derive bounds on the mean value of misadjustment for the LMS algorithm.
2011
A. Zanella, M. Chiani, M. Z. Win (2011). Statistical Analysis of Steepest Descend and LMS Detection Algorithms for MIMO Systems. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 60, 4667-4672 [10.1109/TVT.2011.2170185].
A. Zanella; M. Chiani; M. Z. Win
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/111895
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact