In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals. Participants underwent event-related functional magnetic resonance imaging while performing delayed saccades and long-range arm reaches instructed by visual cues. We focused on activity in the time period following the cue and preceding the actual movement. The use of individual cortical surface reconstructions with detailed sulcal labeling allowed the definition of six responsive regions with distinctive anatomical locations in the PPC. Each region exhibited a distinctive combination of transient and sustained signals during the delay, modulated by either the cue spatial location (contralateral vs. ipsilateral), the instructed action (saccades vs. reaching) or both. Importantly, a lateral and a medial dorsal parietal region showed sustained responses during the delay preferentially for contralateral saccadic and reaching trials, respectively. In the lateral region, preference for saccades was evident only as a more sustained response during saccadic vs. reaching delays, whereas the medial region also showed a higher transient response to cues signaling reaching vs. saccadic actions. These response profiles closely match the behavior of neurons in the macaque lateral and medial intraparietal area, respectively, and suggest that these corresponding human regions are encoding spatially directed action plans or 'intentions'.

Intentional signals during saccadic and reaching delays in the human posterior parietal cortex.

FATTORI, PATRIZIA;GALLETTI, CLAUDIO
2011

Abstract

In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals. Participants underwent event-related functional magnetic resonance imaging while performing delayed saccades and long-range arm reaches instructed by visual cues. We focused on activity in the time period following the cue and preceding the actual movement. The use of individual cortical surface reconstructions with detailed sulcal labeling allowed the definition of six responsive regions with distinctive anatomical locations in the PPC. Each region exhibited a distinctive combination of transient and sustained signals during the delay, modulated by either the cue spatial location (contralateral vs. ipsilateral), the instructed action (saccades vs. reaching) or both. Importantly, a lateral and a medial dorsal parietal region showed sustained responses during the delay preferentially for contralateral saccadic and reaching trials, respectively. In the lateral region, preference for saccades was evident only as a more sustained response during saccadic vs. reaching delays, whereas the medial region also showed a higher transient response to cues signaling reaching vs. saccadic actions. These response profiles closely match the behavior of neurons in the macaque lateral and medial intraparietal area, respectively, and suggest that these corresponding human regions are encoding spatially directed action plans or 'intentions'.
2011
Galati G.; Committeri G.; Pitzalis S.; Pelle G.; Patria F.; Fattori P.;Galletti C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/111602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact