The last years have been characterized by an increasing interest in the grid and cloud computing that allow the implementation of high performance computing structures in a distributed way by exploiting multiple processing resources. The presence of mobile terminals has extended the paradigm to the so called pervasive grid networks, where multiple heterogeneous devices are interconnected to form a distributed computing resource. In such a scenario, there is the need of efficient techniques for providing reliable wireless connections among network nodes. This paper deals with the proposal of a suitable resource management scheme relying on a routing algorithm able to perform jointly the resource discovery and task scheduling for implementing an efficient pervasive grid infrastructure in a wireless ad hoc scenario. The proposed solutions have been considered within two different parallelization processing schemes, and their effectiveness has been verified by resorting to computer simulations.
D. Tarchi, A. Tassi, R. Fantacci (2013). A joint communication and computing resource management scheme for pervasive grid networks. WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, 13(14), 1309-1323 [10.1002/wcm.1190].
A joint communication and computing resource management scheme for pervasive grid networks
TARCHI, DANIELE;
2013
Abstract
The last years have been characterized by an increasing interest in the grid and cloud computing that allow the implementation of high performance computing structures in a distributed way by exploiting multiple processing resources. The presence of mobile terminals has extended the paradigm to the so called pervasive grid networks, where multiple heterogeneous devices are interconnected to form a distributed computing resource. In such a scenario, there is the need of efficient techniques for providing reliable wireless connections among network nodes. This paper deals with the proposal of a suitable resource management scheme relying on a routing algorithm able to perform jointly the resource discovery and task scheduling for implementing an efficient pervasive grid infrastructure in a wireless ad hoc scenario. The proposed solutions have been considered within two different parallelization processing schemes, and their effectiveness has been verified by resorting to computer simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.