Given a strictly pseudoconvex hypersurface M ⊂ C^{n+1}, we discuss the problem of classifying all local CR diffeomorphisms between open subsets N, N′ ⊂ M. Our method exploits the Tanaka-Webster pseudohermitian invariants of a contact form ϑ on M, their transformation formulae, and the Chern-Moser invariants. Our main application concerns a class of generalized ellipsoids where we classify all local CR mappings.
R. Monti, D. Morbidelli (2012). Pseudohermitian invariants and classification of CR mappings in generalized ellipsoids. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 364, 153-179 [10.2969/jmsj/06410153].
Pseudohermitian invariants and classification of CR mappings in generalized ellipsoids
MORBIDELLI, DANIELE
2012
Abstract
Given a strictly pseudoconvex hypersurface M ⊂ C^{n+1}, we discuss the problem of classifying all local CR diffeomorphisms between open subsets N, N′ ⊂ M. Our method exploits the Tanaka-Webster pseudohermitian invariants of a contact form ϑ on M, their transformation formulae, and the Chern-Moser invariants. Our main application concerns a class of generalized ellipsoids where we classify all local CR mappings.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.