We exhibit a recursive procedure that enables us to construct a maximal union of k chains in a finite partially ordered set P for every positive integer k. As a consequence, we obtain an algorithmic proof of Greene's Duality Theorem on the relations between the cardinalities of maximal unions of chains and antichains in a finite poset.

M. Barnabei, F. Bonetti, M. Silimbani (2005). An algorithmic approach to maximal unions of chains in a partially ordered set. PURE MATHEMATICS AND APPLICATIONS, 16, 199-216.

An algorithmic approach to maximal unions of chains in a partially ordered set

BARNABEI, MARILENA;BONETTI, FLAVIO;SILIMBANI, MATTEO
2005

Abstract

We exhibit a recursive procedure that enables us to construct a maximal union of k chains in a finite partially ordered set P for every positive integer k. As a consequence, we obtain an algorithmic proof of Greene's Duality Theorem on the relations between the cardinalities of maximal unions of chains and antichains in a finite poset.
2005
M. Barnabei, F. Bonetti, M. Silimbani (2005). An algorithmic approach to maximal unions of chains in a partially ordered set. PURE MATHEMATICS AND APPLICATIONS, 16, 199-216.
M. Barnabei; F. Bonetti; M. Silimbani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/11121
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact