In this paper we present a mathematical approach to evaluate the area throughput and the energy consumption of a multi-sink Wireless Sensor Network (WSN). The WSN is organised into clusters, with one sink per cluster collecting data from sensors. A small variation of the Thomas point process is used to model sensors and sinks positions in the target area. We denote as area throughput the amount of data per unit of time successfully transmitted to the sinks. Both area throughput and energy consumption are strictly related to connectivity and MAC issues. The aim of this work is to devise a mathematical model that takes MAC and connectivity issues into account, under a common framework. We also explicitly include border effects induced by deployment into a finite region into our framework. We study the behavior of these two performance metrics when varying the target rate, defined as the maximum data rate the network was deployed to deliver. Results show that a tradeoff between the area throughput and the energy consumption must be found, when considering two different scenarios, namely, a field and a building.

Area Throughput and Energy Efficiency for Clustered Wireless Sensor Networks Deployed in Bounded Regions

FABBRI, FLAVIO;BURATTI, CHIARA;VERDONE, ROBERTO
2009

Abstract

In this paper we present a mathematical approach to evaluate the area throughput and the energy consumption of a multi-sink Wireless Sensor Network (WSN). The WSN is organised into clusters, with one sink per cluster collecting data from sensors. A small variation of the Thomas point process is used to model sensors and sinks positions in the target area. We denote as area throughput the amount of data per unit of time successfully transmitted to the sinks. Both area throughput and energy consumption are strictly related to connectivity and MAC issues. The aim of this work is to devise a mathematical model that takes MAC and connectivity issues into account, under a common framework. We also explicitly include border effects induced by deployment into a finite region into our framework. We study the behavior of these two performance metrics when varying the target rate, defined as the maximum data rate the network was deployed to deliver. Results show that a tradeoff between the area throughput and the energy consumption must be found, when considering two different scenarios, namely, a field and a building.
IEEE NEWCOM/ACORN Workshop
1
6
J. Riihijarvi; F. Fabbri; C. Buratti; P. Mahonen; R. Verdone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/110933
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact