We analysed high-resolution UVES spectra of six stars belonging to the subgiant branch of ω Centauri, and derived abundance ratios of 19 chemical elements (namely Al, Ba, C, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, N, Na, Ni, Sc, Si, Sr, Ti, and Y). A comparison with previous abundance determinations for red giants provided remarkable agreement and allowed us to identify the sub-populations to which our targets belong. We found that three targets belong to a low-metallicity population at [Fe/H] -2.0 dex, [α/Fe] +0.4 dex and [s/Fe]=0 dex. Stars with similar characteristics were found in small amounts by past surveys of red giants. We discuss the possibility that they belong to a separate sub-population that we name VMP (very metal-poor, at most 5% of the total cluster population), which - in the self-enrichment hypothesis - is the best-candidate first stellar generation in ω Cen. Two of the remaining targets belong to the dominant metal-poor population (MP) at [Fe/H] -1.7 dex, and the last one to the metal-intermediate (MInt) one at [Fe/H] -1.2 dex. The existence of the newly defined VMP population could help to understand some puzzling results based on low-resolution spectroscopy for age differences determinations, because the metallicity resolution of these studies was probably not enough to detect the VMP population. The VMP could also correspond to some of the additional substructures of the subgiant-branch region found in the latest HST photometry. After trying to correlate chemical abundances with substructures in the subgiant branch of ω Cen, we found that the age difference between the VMP and MP populations should be small (0± 2 Gyr), while the difference between the MP and MInt populations could be slightly larger (2± 2 Gyr).

The subgiant branch of omegaCentauri seen through high-resolution spectroscopy. I. The first stellar generation in omega Cen? / Pancino E.; Mucciarelli A.; Sbordone L.; Bellazzini M.; Pasquini L.; Monaco L.; Ferraro F.R.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 572:(2011), pp. 18-32. [10.1051/0004-6361/201016024]

The subgiant branch of omegaCentauri seen through high-resolution spectroscopy. I. The first stellar generation in omega Cen?

MUCCIARELLI, ALESSIO;FERRARO, FRANCESCO ROSARIO
2011

Abstract

We analysed high-resolution UVES spectra of six stars belonging to the subgiant branch of ω Centauri, and derived abundance ratios of 19 chemical elements (namely Al, Ba, C, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, N, Na, Ni, Sc, Si, Sr, Ti, and Y). A comparison with previous abundance determinations for red giants provided remarkable agreement and allowed us to identify the sub-populations to which our targets belong. We found that three targets belong to a low-metallicity population at [Fe/H] -2.0 dex, [α/Fe] +0.4 dex and [s/Fe]=0 dex. Stars with similar characteristics were found in small amounts by past surveys of red giants. We discuss the possibility that they belong to a separate sub-population that we name VMP (very metal-poor, at most 5% of the total cluster population), which - in the self-enrichment hypothesis - is the best-candidate first stellar generation in ω Cen. Two of the remaining targets belong to the dominant metal-poor population (MP) at [Fe/H] -1.7 dex, and the last one to the metal-intermediate (MInt) one at [Fe/H] -1.2 dex. The existence of the newly defined VMP population could help to understand some puzzling results based on low-resolution spectroscopy for age differences determinations, because the metallicity resolution of these studies was probably not enough to detect the VMP population. The VMP could also correspond to some of the additional substructures of the subgiant-branch region found in the latest HST photometry. After trying to correlate chemical abundances with substructures in the subgiant branch of ω Cen, we found that the age difference between the VMP and MP populations should be small (0± 2 Gyr), while the difference between the MP and MInt populations could be slightly larger (2± 2 Gyr).
2011
The subgiant branch of omegaCentauri seen through high-resolution spectroscopy. I. The first stellar generation in omega Cen? / Pancino E.; Mucciarelli A.; Sbordone L.; Bellazzini M.; Pasquini L.; Monaco L.; Ferraro F.R.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 572:(2011), pp. 18-32. [10.1051/0004-6361/201016024]
Pancino E.; Mucciarelli A.; Sbordone L.; Bellazzini M.; Pasquini L.; Monaco L.; Ferraro F.R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/110924
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 23
social impact