The goal of this paper is to present an original real-time algorithm devised for detection of tsunami or tsunami-like waves we call TEDA (Tsunami Early Detection Algorithm), and to introduce a methodology to evaluate its performance. TEDA works on the sea level records of a single station and implements two distinct modules running concurrently: one to assess the presence of tsunami waves ("tsunami detection") and the other to identify high-amplitude long waves ("secure detection"). Both detection methods are based on continuously updated time functions depending on a number of parameters that can be varied according to the application. In order to select the most adequate parameter setting for a given station, a methodology to evaluate TEDA performance has been devised, that is based on a number of indicators and that is simple to use. In this paper an example of TEDA application is given by using data from a tide gauge located at the Adak Island in Alaska, USA, that resulted in being quite suitable since it recorded several tsunamis in the last years using the sampling rate of 1 min.
Bressan L., Tinti S. (2011). Structure and performance of a real-time algorithm to detect tsunami or tsunami-like alert conditions based on sea-level records analysis. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 11, 1499-1521 [10.5194/nhess-11-1499-2011].
Structure and performance of a real-time algorithm to detect tsunami or tsunami-like alert conditions based on sea-level records analysis
BRESSAN, LIDIA;TINTI, STEFANO
2011
Abstract
The goal of this paper is to present an original real-time algorithm devised for detection of tsunami or tsunami-like waves we call TEDA (Tsunami Early Detection Algorithm), and to introduce a methodology to evaluate its performance. TEDA works on the sea level records of a single station and implements two distinct modules running concurrently: one to assess the presence of tsunami waves ("tsunami detection") and the other to identify high-amplitude long waves ("secure detection"). Both detection methods are based on continuously updated time functions depending on a number of parameters that can be varied according to the application. In order to select the most adequate parameter setting for a given station, a methodology to evaluate TEDA performance has been devised, that is based on a number of indicators and that is simple to use. In this paper an example of TEDA application is given by using data from a tide gauge located at the Adak Island in Alaska, USA, that resulted in being quite suitable since it recorded several tsunamis in the last years using the sampling rate of 1 min.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.