The depth-duration envelope curves (DDECs) are regional upper bounds on observed rainfall maxima for several durations. Recently, a probabilistic interpretation has been proposed in the literature in order to associate a recurrence interval T to the DDECs and, consequently, to retrieve point rainfall quantiles for ungauged sites. Alternatively, extreme rainfall quantiles can be retrieved from long synthetic rainfall series obtained with stochastic rainfall generators calibrated to local time series of rainfall events. While DDECs are sensitive to outliers and data errors, the stochastic rainfall generator performance is affected by the limited record lengths used for calibration. The objective of this study is to assess the reliability of the two alternative methods by verifying if they give consistent results for a wide study region in Austria. Relative to previous studies, we propose some generalizations of the DDEC procedure in order to better represent the Austrian data. The comparison of rainfall quantiles estimated with the two methods for large T shows an excellent agreement for intermediate durations (from 1 to 6 h), while the agreement worsen for very short (15 min) and long (24 h) durations. The results are scrupulously analyzed and discussed in light of the exceptionality of rainfall events that set the regional envelopes and the characteristics of the stochastic generator used. Our study points out that the combined use of these regional and local methods can be very useful for estimating reliable point rainfall quantiles associated with large T within regions where many rain gauges are available, but with limited record lengths.

Extreme rainstorms: Comparing regional envelope curves to stochastically generated events / A. Viglione; A. Castellarin; M. Rogger; R. Merz; G. Blöschl. - In: WATER RESOURCES RESEARCH. - ISSN 0043-1397. - STAMPA. - 48:(2012), pp. W01509.W01509-1-W01509.W01509-16. [10.1029/2011WR010515]

Extreme rainstorms: Comparing regional envelope curves to stochastically generated events

CASTELLARIN, ATTILIO;
2012

Abstract

The depth-duration envelope curves (DDECs) are regional upper bounds on observed rainfall maxima for several durations. Recently, a probabilistic interpretation has been proposed in the literature in order to associate a recurrence interval T to the DDECs and, consequently, to retrieve point rainfall quantiles for ungauged sites. Alternatively, extreme rainfall quantiles can be retrieved from long synthetic rainfall series obtained with stochastic rainfall generators calibrated to local time series of rainfall events. While DDECs are sensitive to outliers and data errors, the stochastic rainfall generator performance is affected by the limited record lengths used for calibration. The objective of this study is to assess the reliability of the two alternative methods by verifying if they give consistent results for a wide study region in Austria. Relative to previous studies, we propose some generalizations of the DDEC procedure in order to better represent the Austrian data. The comparison of rainfall quantiles estimated with the two methods for large T shows an excellent agreement for intermediate durations (from 1 to 6 h), while the agreement worsen for very short (15 min) and long (24 h) durations. The results are scrupulously analyzed and discussed in light of the exceptionality of rainfall events that set the regional envelopes and the characteristics of the stochastic generator used. Our study points out that the combined use of these regional and local methods can be very useful for estimating reliable point rainfall quantiles associated with large T within regions where many rain gauges are available, but with limited record lengths.
2012
Extreme rainstorms: Comparing regional envelope curves to stochastically generated events / A. Viglione; A. Castellarin; M. Rogger; R. Merz; G. Blöschl. - In: WATER RESOURCES RESEARCH. - ISSN 0043-1397. - STAMPA. - 48:(2012), pp. W01509.W01509-1-W01509.W01509-16. [10.1029/2011WR010515]
A. Viglione; A. Castellarin; M. Rogger; R. Merz; G. Blöschl
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/110672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact