We study the notion of intrinsic Lipschitz graphs within Heisenberg groups, focusing our attention on their Hausdorff dimension and on almost everywhere existence of (geometrically defined) tangent subgroups. In particular, a Rademacher type theorem enables us to prove that previous definitions of rectifiable sets in Heisenberg groups are natural ones.

B. Franchi, R. Serapioni, F. Serra Cassano (2011). Differentiability of intrinsic Lipschitz functions within Heisenberg groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 21, 1044-1084 [10.1007/s12220-010-9178-4].

Differentiability of intrinsic Lipschitz functions within Heisenberg groups

FRANCHI, BRUNO;
2011

Abstract

We study the notion of intrinsic Lipschitz graphs within Heisenberg groups, focusing our attention on their Hausdorff dimension and on almost everywhere existence of (geometrically defined) tangent subgroups. In particular, a Rademacher type theorem enables us to prove that previous definitions of rectifiable sets in Heisenberg groups are natural ones.
2011
B. Franchi, R. Serapioni, F. Serra Cassano (2011). Differentiability of intrinsic Lipschitz functions within Heisenberg groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 21, 1044-1084 [10.1007/s12220-010-9178-4].
B. Franchi; R. Serapioni; F. Serra Cassano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/110395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact