Aquatic organisms may suffer from exposure to high Cu concentrations, since this metal is widely used in feed supplementation, in pesticide formulation and as antifouling. Chronic exposure to Cu, even at sub-lethal doses, may strongly affect fish physiology. To date, several biomarkers have been used to detect Cu exposure in fish producing contrasting results. Therefore, we used a proteomic approach to clarify how Cu exposure may affect the serum proteome of gilthead sea bream (Sparus aurata), since serum could be considered a good source of early-biomarkers of Cu toxicosis. For this purpose we exposed juvenile gilthead sea bream to waterborne Cu (0.5 mg/L). Our results indicate that fish tightly regulate circulating Cu levels, which are not affected by metal exposure. This homeostatic control is mainly achieved by the liver, able to excrete high amounts of the metal via bile. Cu exposure caused differential expression of several serum proteins, 10 of which were identified by Mascot and BLAST search. All these proteins, with the exception of growth hormone receptor;-glutamyl-carboxylase, can be related to: 1) Cu-induced hepatotoxicity (cytochrome oxidase subunit I, alanine aminotransferase, glutathione S-transferase); 2) potential immunosuppression due to interference of Cu with the inflammation/immunity network (alpha-1 antitrypsin, angiotensinogen, complement component C3, recombination-activating protein-1 and warm temperature acclimation-related 65 kDa protein).
Effects of waterborne Cu exposure in gilthead sea bream (Sperus aurata): a proteomic approach
ISANI, GLORIA;ANDREANI, GIULIA;CARPENE', EMILIO;DI MOLFETTA, SERENA;SPISNI, ENZO
2011
Abstract
Aquatic organisms may suffer from exposure to high Cu concentrations, since this metal is widely used in feed supplementation, in pesticide formulation and as antifouling. Chronic exposure to Cu, even at sub-lethal doses, may strongly affect fish physiology. To date, several biomarkers have been used to detect Cu exposure in fish producing contrasting results. Therefore, we used a proteomic approach to clarify how Cu exposure may affect the serum proteome of gilthead sea bream (Sparus aurata), since serum could be considered a good source of early-biomarkers of Cu toxicosis. For this purpose we exposed juvenile gilthead sea bream to waterborne Cu (0.5 mg/L). Our results indicate that fish tightly regulate circulating Cu levels, which are not affected by metal exposure. This homeostatic control is mainly achieved by the liver, able to excrete high amounts of the metal via bile. Cu exposure caused differential expression of several serum proteins, 10 of which were identified by Mascot and BLAST search. All these proteins, with the exception of growth hormone receptor;-glutamyl-carboxylase, can be related to: 1) Cu-induced hepatotoxicity (cytochrome oxidase subunit I, alanine aminotransferase, glutathione S-transferase); 2) potential immunosuppression due to interference of Cu with the inflammation/immunity network (alpha-1 antitrypsin, angiotensinogen, complement component C3, recombination-activating protein-1 and warm temperature acclimation-related 65 kDa protein).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.