The skyline of a relation is the set of tuples that are not dominated by any other tuple in the same relation, where tuple u dominates tuple v if u is no worse than v on all the attributes of interest and strictly better on at least one attribute. Previous attempts to extend skyline queries to probabilistic databases have proposed either a weaker form of domination, which is unsuitable to univocally define the skyline, or a definition that implies algorithms with exponential complexity. In this paper we demonstrate how, given a semantics for linearly ranking probabilistic tuples, the skyline of a probabilistic relation can be univocally defined. Our approach preserves the three fundamental properties of skyline: 1) it equals the union of all top-1 results of monotone scoring functions, 2) it requires no additional parameter to be specified, and 3) it is insensitive to actual attribute scales. We also detail efficient sequential and index-based algorithms.

I. Bartolini, P. Ciaccia, M. Patella (2011). Getting the Best from Uncertain Data.

Getting the Best from Uncertain Data

BARTOLINI, ILARIA;CIACCIA, PAOLO;PATELLA, MARCO
2011

Abstract

The skyline of a relation is the set of tuples that are not dominated by any other tuple in the same relation, where tuple u dominates tuple v if u is no worse than v on all the attributes of interest and strictly better on at least one attribute. Previous attempts to extend skyline queries to probabilistic databases have proposed either a weaker form of domination, which is unsuitable to univocally define the skyline, or a definition that implies algorithms with exponential complexity. In this paper we demonstrate how, given a semantics for linearly ranking probabilistic tuples, the skyline of a probabilistic relation can be univocally defined. Our approach preserves the three fundamental properties of skyline: 1) it equals the union of all top-1 results of monotone scoring functions, 2) it requires no additional parameter to be specified, and 3) it is insensitive to actual attribute scales. We also detail efficient sequential and index-based algorithms.
2011
Proceedings of the 19th Italian Symposium on Advanced Database Systems
9
20
I. Bartolini, P. Ciaccia, M. Patella (2011). Getting the Best from Uncertain Data.
I. Bartolini; P. Ciaccia; M. Patella
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/109795
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact