Evidence in mouse models for Down syndrome (DS) and human fetuses with DS clearly shows severe neurogenesis impairment in various telencephalic regions, suggesting that this defect may underlie the cognitive abnormalities of DS. As cerebellar hypotrophy and motor disturbances are part of the clinical features of DS, the goal of our study was to establish whether these defects may be related to neurogenesis impairment during cerebellar development. We found that in fetuses with DS (17-21 weeks of gestation) the cerebellum had an immature pattern, a reduced volume and notably fewer cells (-25%/-50%) in all cerebellar layers. Immunohistochemistry for Ki-67, a marker of cycling cells, showed impaired proliferation (-17%/-50%) of precursors from both cerebellar neurogenic regions (external granular layer and ventricular zone). No differences in apoptotic cell death were found in DS vs. control fetuses. The current study provides novel evidence that in the cerebellum of DS fetuses there is a generalized hypocellularity and that this defect is due to proliferation impairment, rather than to an increased cell death. The reduced proliferation potency found in the DS fetal cerebellum, in conjunction with previous evidence, strengthens the idea that the trisomic brain is characterized by widespread neurogenesis disruption

GUIDI S, CIANI E, BONASONI P, SANTINI D, BARTESAGHI R (2011). Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with Down syndrome. BRAIN PATHOLOGY, 21, 361-373 [10.1111/j.1750-3639.2010.00459.x.].

Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with Down syndrome.

GUIDI, SANDRA;CIANI, ELISABETTA;BARTESAGHI, RENATA
2011

Abstract

Evidence in mouse models for Down syndrome (DS) and human fetuses with DS clearly shows severe neurogenesis impairment in various telencephalic regions, suggesting that this defect may underlie the cognitive abnormalities of DS. As cerebellar hypotrophy and motor disturbances are part of the clinical features of DS, the goal of our study was to establish whether these defects may be related to neurogenesis impairment during cerebellar development. We found that in fetuses with DS (17-21 weeks of gestation) the cerebellum had an immature pattern, a reduced volume and notably fewer cells (-25%/-50%) in all cerebellar layers. Immunohistochemistry for Ki-67, a marker of cycling cells, showed impaired proliferation (-17%/-50%) of precursors from both cerebellar neurogenic regions (external granular layer and ventricular zone). No differences in apoptotic cell death were found in DS vs. control fetuses. The current study provides novel evidence that in the cerebellum of DS fetuses there is a generalized hypocellularity and that this defect is due to proliferation impairment, rather than to an increased cell death. The reduced proliferation potency found in the DS fetal cerebellum, in conjunction with previous evidence, strengthens the idea that the trisomic brain is characterized by widespread neurogenesis disruption
2011
GUIDI S, CIANI E, BONASONI P, SANTINI D, BARTESAGHI R (2011). Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with Down syndrome. BRAIN PATHOLOGY, 21, 361-373 [10.1111/j.1750-3639.2010.00459.x.].
GUIDI S; CIANI E; BONASONI P; SANTINI D; BARTESAGHI R
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/109097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 68
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 111
social impact