We present the analysis of a kinematic data set of stars in the globular cluster NGC 2419, taken with the DEep Imaging Multi-Object Spectrograph at the Keck II telescope. Combined with a reanalysis of deep Hubble Space Telescope and Subaru Telescope imaging data, which provide an accurate luminosity profile of the cluster, we investigate the validity of a large set of dynamical models of the system, which are checked for stability via N-body simulations. We find that isotropic models in either Newtonian or Modified Newtonian Dynamics (MOND) are ruled out with extremely high confidence. However, a simple Michie model in Newtonian gravity with anisotropic velocity dispersion provides an excellent representation of the luminosity profile and kinematics of the cluster. The anisotropy profiles of these models ensure an isotropic center to the cluster, which progresses to extreme radial anisotropy toward the outskirts. In contrast, with MOND we find that Michie models that reproduce the luminosity profile either overpredict the velocity dispersion on the outskirts of the cluster if the mass-to-light ratio (M/L) is kept at astrophysically motivated values or else they underpredict the central velocity dispersion if the M/L is taken to be very small. We find that the best Michie model in MOND is a factor of ~104 less likely than the Newtonian model that best fits the system. A likelihood ratio of 350 is found when we investigate more general models by solving the Jeans equation with a Markov Chain Monte Carlo scheme. We verified with N-body simulations that these results are not significantly different when the MOND external field effect is accounted for. If the assumptions that the cluster is in dynamical equilibrium, spherical, not on a peculiar orbit, and possesses a single dynamical tracer population of constant M/L are correct, we conclude that the present observations provide a very severe challenge for MOND.

The Globular Cluster NGC 2419: A Crucible for Theories of Gravity

NIPOTI, CARLO;DALESSANDRO, EMANUELE
2011

Abstract

We present the analysis of a kinematic data set of stars in the globular cluster NGC 2419, taken with the DEep Imaging Multi-Object Spectrograph at the Keck II telescope. Combined with a reanalysis of deep Hubble Space Telescope and Subaru Telescope imaging data, which provide an accurate luminosity profile of the cluster, we investigate the validity of a large set of dynamical models of the system, which are checked for stability via N-body simulations. We find that isotropic models in either Newtonian or Modified Newtonian Dynamics (MOND) are ruled out with extremely high confidence. However, a simple Michie model in Newtonian gravity with anisotropic velocity dispersion provides an excellent representation of the luminosity profile and kinematics of the cluster. The anisotropy profiles of these models ensure an isotropic center to the cluster, which progresses to extreme radial anisotropy toward the outskirts. In contrast, with MOND we find that Michie models that reproduce the luminosity profile either overpredict the velocity dispersion on the outskirts of the cluster if the mass-to-light ratio (M/L) is kept at astrophysically motivated values or else they underpredict the central velocity dispersion if the M/L is taken to be very small. We find that the best Michie model in MOND is a factor of ~104 less likely than the Newtonian model that best fits the system. A likelihood ratio of 350 is found when we investigate more general models by solving the Jeans equation with a Markov Chain Monte Carlo scheme. We verified with N-body simulations that these results are not significantly different when the MOND external field effect is accounted for. If the assumptions that the cluster is in dynamical equilibrium, spherical, not on a peculiar orbit, and possesses a single dynamical tracer population of constant M/L are correct, we conclude that the present observations provide a very severe challenge for MOND.
2011
Ibata R.; Sollima A.; Nipoti C.; Bellazzini M.; Chapman S.C.; Dalessandro E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/108790
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 76
social impact