This paper presents the design, fabrication and experimental characterization of a capacitive differential pressure transducer, suitable to be implemented in a wireless sensor network for wind sail monitoring. The network is aimed at sensing the pressure field acting on the surface of a sail by means of instrumented battens, providing the real-time differential pressure map over the sail surface. Each batten was constructed to house a number of wireless nodes within which a pressure sensing unit was integrated, providing an independent pressure measurements. The pressure sensor was fabricated using printed circuit board technology, resulting in a thin, triple-layered structure which comprised a pre-stressed polymeric diaphragm, woven glass reinforced epoxy resin layers and metal layers. During the design phase, numerical simulations were used to estimate the pressure-capacitance static characteristic of the sensor by means of a non-linear, coupled mechanical-electrostatic numerical model. In this paper, we show both numerically and experimentally that inducing a pre-stress in the sensor diaphragm reduced undesired effects due to viscoelasticity, resulting in improved output accuracy. The sensors were experimentally characterized in a pressure range of +/- 250 Pa and the results were compared with numerical simulations.
Titolo: | Design and characterization of polymeric pressure sensors for wireless wind sail monitoring |
Autore/i: | ROSSETTI, ALESSANDRO; CODELUPPI, ROSSANO; GOLFARELLI, ALESSANDRO; ZAGNONI, MICHELE; TALAMELLI, ALESSANDRO; TARTAGNI, MARCO |
Autore/i Unibo: | |
Anno: | 2011 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.sna.2011.02.033 |
Abstract: | This paper presents the design, fabrication and experimental characterization of a capacitive differential pressure transducer, suitable to be implemented in a wireless sensor network for wind sail monitoring. The network is aimed at sensing the pressure field acting on the surface of a sail by means of instrumented battens, providing the real-time differential pressure map over the sail surface. Each batten was constructed to house a number of wireless nodes within which a pressure sensing unit was integrated, providing an independent pressure measurements. The pressure sensor was fabricated using printed circuit board technology, resulting in a thin, triple-layered structure which comprised a pre-stressed polymeric diaphragm, woven glass reinforced epoxy resin layers and metal layers. During the design phase, numerical simulations were used to estimate the pressure-capacitance static characteristic of the sensor by means of a non-linear, coupled mechanical-electrostatic numerical model. In this paper, we show both numerically and experimentally that inducing a pre-stress in the sensor diaphragm reduced undesired effects due to viscoelasticity, resulting in improved output accuracy. The sensors were experimentally characterized in a pressure range of +/- 250 Pa and the results were compared with numerical simulations. |
Data prodotto definitivo in UGOV: | 2013-06-27 16:33:39 |
Appare nelle tipologie: | 1.01 Articolo in rivista |