We prove results of well-posedness of the global Cauchy problem in Sobolev spaces for a class of evolution equations with real characteristics that contains an Euler– Bernoulli vibrating beam model. We consider non-Lipschitz coefficients with respect to the time variable t and study the sharp rate of their oscillations. This is coupled with some necessary decay conditions as the spatial variable x → ∞.

On Schrödinger type evolution equations with non-Lipschitz coefficients

CICOGNANI, MASSIMO;
2011

Abstract

We prove results of well-posedness of the global Cauchy problem in Sobolev spaces for a class of evolution equations with real characteristics that contains an Euler– Bernoulli vibrating beam model. We consider non-Lipschitz coefficients with respect to the time variable t and study the sharp rate of their oscillations. This is coupled with some necessary decay conditions as the spatial variable x → ∞.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/107593
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact