We investigate the existence of heteroclinic solutions to a class of nonlinear differential equations (a(x)F (x'(t)))' = f (t, x(t), x (t)), a.e. t ∈ R governed by a nonlinear differential operator F extending the classical p-Laplacian, with right-hand side f having the critical rate of decay -1 as |t| goes to +∞, that is f (t, ·, ·) ≈ 1. We prove general existence and non-existence results, as well as some simple criteria useful for right-hand side having the product structure f(t, x, x’) = b(t,x)c(x, x’).

On the solvability of a boundary value problem on the real line

CUPINI, GIOVANNI;
2011

Abstract

We investigate the existence of heteroclinic solutions to a class of nonlinear differential equations (a(x)F (x'(t)))' = f (t, x(t), x (t)), a.e. t ∈ R governed by a nonlinear differential operator F extending the classical p-Laplacian, with right-hand side f having the critical rate of decay -1 as |t| goes to +∞, that is f (t, ·, ·) ≈ 1. We prove general existence and non-existence results, as well as some simple criteria useful for right-hand side having the product structure f(t, x, x’) = b(t,x)c(x, x’).
G. Cupini; C. Marcelli; F. Papalini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/106724
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact