We consider the following classical autonomous variational problem: Minimize {F(u) = \int_a^b f(u(x), u'(x))dx : u ∈ AC([a, b]), u(a) = α, u(b) = β, u([a, b]) ⊆ I} where I is a real interval, α, β ∈ I, and f : I × R → [0, +∞) is possibly neither continuous, nor coercive, nor convex; in particular f(s,·) may be not convex at 0. Assuming the solvability of the relaxed problem, we prove under mild assumptions that the above variational problem has a solution, too.

A relaxation result for non-convex and non-coercive simple integrals

CUPINI, GIOVANNI
2012

Abstract

We consider the following classical autonomous variational problem: Minimize {F(u) = \int_a^b f(u(x), u'(x))dx : u ∈ AC([a, b]), u(a) = α, u(b) = β, u([a, b]) ⊆ I} where I is a real interval, α, β ∈ I, and f : I × R → [0, +∞) is possibly neither continuous, nor coercive, nor convex; in particular f(s,·) may be not convex at 0. Assuming the solvability of the relaxed problem, we prove under mild assumptions that the above variational problem has a solution, too.
M. Bianchini; G. Cupini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/106567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact