This paper presents the first steps in the implementation of a morphological numerical model to be applied in the Bevano River region, a shallow water area in the Adriatic Sea, with the aim of helping the identification and assessment of erosional patterns and bottom morphological modifications induced by severe marine storms. The numerical modeling, performed using a fully 3D coupled wave-current-sediment version of the ROMS model, has been complemented with in situ data analysis and observations: a first qualitative validation of the results was given by the analysis of images acquired via an ARGUS video station. Hydrodynamic modeling highlighted how shear bottom stresses and bottom currents fields were heavily influenced by severe storm situations, and had large effects on the morphology of shallow regions. The correlation between the wave-current induced bottom stresses and the resulting topography was investigated. Nearshore hydrodynamics modeling results demonstrated the dominant role played by alongshore sediment transport, with the magnitude of both cross- and along-shore wave-induced currents strongly depending on wave height and direction. We found a good qualitative conformity between the results of the numerical models applied during a “Bora” storm and the corresponding video observations; both techniques indicated the migration of the existing sandbar within the range of about 40 m seaward. Results show how integrated numerical open source tools, often used in oceanography, are becoming suitable for both preliminary investigations and for planning the effective littoral management, and how their calibration can be supported by the use of new low cost techniques, such as video measurements.
S. Carniel, M. Sclavo, R. Archetti (2011). Towards validating a last generation, integrated wave-current-sediment numerical model in coastal regions using video measurements. OCEANOLOGICAL AND HYDROBIOLOGICAL STUDIES, 40(4), 11-20 [10.2478/s13545-011-0036-1].
Towards validating a last generation, integrated wave-current-sediment numerical model in coastal regions using video measurements
ARCHETTI, RENATA
2011
Abstract
This paper presents the first steps in the implementation of a morphological numerical model to be applied in the Bevano River region, a shallow water area in the Adriatic Sea, with the aim of helping the identification and assessment of erosional patterns and bottom morphological modifications induced by severe marine storms. The numerical modeling, performed using a fully 3D coupled wave-current-sediment version of the ROMS model, has been complemented with in situ data analysis and observations: a first qualitative validation of the results was given by the analysis of images acquired via an ARGUS video station. Hydrodynamic modeling highlighted how shear bottom stresses and bottom currents fields were heavily influenced by severe storm situations, and had large effects on the morphology of shallow regions. The correlation between the wave-current induced bottom stresses and the resulting topography was investigated. Nearshore hydrodynamics modeling results demonstrated the dominant role played by alongshore sediment transport, with the magnitude of both cross- and along-shore wave-induced currents strongly depending on wave height and direction. We found a good qualitative conformity between the results of the numerical models applied during a “Bora” storm and the corresponding video observations; both techniques indicated the migration of the existing sandbar within the range of about 40 m seaward. Results show how integrated numerical open source tools, often used in oceanography, are becoming suitable for both preliminary investigations and for planning the effective littoral management, and how their calibration can be supported by the use of new low cost techniques, such as video measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.