In this paper, we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on images as locally order-preserving transformations of pixel intensities plus additive noise. This allows us to identify within the space of all of the possible image change patterns the subspace corresponding to disturbance factors effects. Hence, scene changes can be detected by a-contrario testing the hypothesis that the measured pattern is due to disturbance factors, that is, by computing a distance between the pattern and the subspace. By assuming additive Gaussian noise, the distance can be computed within a maximum likelihood nonparametric isotonic regression framework. In particular, the projection of the pattern onto the subspace is computed by an O(N) iterative procedure known as Pool Adjacent Violators algorithm.

Statistical Change Detection by the Pool Adjacent Violators Algorithm

LANZA, ALESSANDRO;DI STEFANO, LUIGI
2011

Abstract

In this paper, we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on images as locally order-preserving transformations of pixel intensities plus additive noise. This allows us to identify within the space of all of the possible image change patterns the subspace corresponding to disturbance factors effects. Hence, scene changes can be detected by a-contrario testing the hypothesis that the measured pattern is due to disturbance factors, that is, by computing a distance between the pattern and the subspace. By assuming additive Gaussian noise, the distance can be computed within a maximum likelihood nonparametric isotonic regression framework. In particular, the projection of the pattern onto the subspace is computed by an O(N) iterative procedure known as Pool Adjacent Violators algorithm.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/106137
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact