The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate ordinal items. Time-dependent latent variables are linked with an autoregressive model. Simulation results have shown composite likelihood estimators to have a small amount of bias and mean square error and as such they are feasible alternatives to full maximum likelihood. Model selection criteria developed for composite likelihood estimation are used in the applications. Furthermore, lower-order residuals are used as measures-of-fit for the selected models.

A composite likelihood inference in latent variable models for ordinal longitudinal responses

CAGNONE, SILVIA;
2012

Abstract

The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate ordinal items. Time-dependent latent variables are linked with an autoregressive model. Simulation results have shown composite likelihood estimators to have a small amount of bias and mean square error and as such they are feasible alternatives to full maximum likelihood. Model selection criteria developed for composite likelihood estimation are used in the applications. Furthermore, lower-order residuals are used as measures-of-fit for the selected models.
Vasdekis V.; Cagnone S.; Moustaki I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/106049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact