The recent analysis of the S-locus region of apple and Japanese pear, two species of Pyrinae (Rosaceae), suggested multiple and different F-box genes (called SFBBs) as candidates for the male determinant (pollen S) of RNase-based gametophytic self-incompatibility in these two species. Here, we followed a phylogenetic approach to take advantage of the pattern of molecular evolution of the S-locus of Pyrinae in characterizing SFBB homologs belonging to S-haplotypes of apple and three species of Pyrus (European, Japanese, and Chinese pears). Our results suggested that the S-locus region of Pyrinae contains no less than six SFBB members and that its structure seems to be rather conserved between apple and pear species. In accordance with the prevailing theory on S-haplotype evolution, the pollen S is expected to have coevolved with the S-RNase and to show some common features derived from the long-term evolution under frequency-dependent balancing selection, i.e., high sequence diversity, evidence of positive selection, and shared ancestral polymorphisms. Using this conceptual framework, we present evidence that some SFBB genes may be better candidates for pollen S in Pyrinae than others. Overall, the SFBB genes analyzed exhibited much lower sequence diversity than their associated S-RNases; likewise, they showed little or no evidence of positive selection. However, evidence of coevolution with the S-RNase clearly emerged for two of them. Altogether our results suggested different evolutionary histories for different SFBBs putatively derived from their distinct involvement in self-incompatibility.

Evaluation of candidate F-box genes for the pollen S of gametophytic self-incompatibility in the Pyrinae (Rosaceae) on the basis of their phylogenomic context

DE FRANCESCHI, PAOLO;PIERANTONI, LUCA;DONDINI, LUCA;GRANDI, MARCO;SANSAVINI, SILVIERO;
2011

Abstract

The recent analysis of the S-locus region of apple and Japanese pear, two species of Pyrinae (Rosaceae), suggested multiple and different F-box genes (called SFBBs) as candidates for the male determinant (pollen S) of RNase-based gametophytic self-incompatibility in these two species. Here, we followed a phylogenetic approach to take advantage of the pattern of molecular evolution of the S-locus of Pyrinae in characterizing SFBB homologs belonging to S-haplotypes of apple and three species of Pyrus (European, Japanese, and Chinese pears). Our results suggested that the S-locus region of Pyrinae contains no less than six SFBB members and that its structure seems to be rather conserved between apple and pear species. In accordance with the prevailing theory on S-haplotype evolution, the pollen S is expected to have coevolved with the S-RNase and to show some common features derived from the long-term evolution under frequency-dependent balancing selection, i.e., high sequence diversity, evidence of positive selection, and shared ancestral polymorphisms. Using this conceptual framework, we present evidence that some SFBB genes may be better candidates for pollen S in Pyrinae than others. Overall, the SFBB genes analyzed exhibited much lower sequence diversity than their associated S-RNases; likewise, they showed little or no evidence of positive selection. However, evidence of coevolution with the S-RNase clearly emerged for two of them. Altogether our results suggested different evolutionary histories for different SFBBs putatively derived from their distinct involvement in self-incompatibility.
2011
De Franceschi P.;Pierantoni L.; Dondini L.; Grandi M.; Sansavini S; Sanzol J
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/105434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact