Remyelination failure is a key landmark in chronic progression of multiple sclerosis (MS), the most diffuse demyelinating disease in human, but the reasons for this are still unknown. It has been shown that thyroid hormone administration in the rodent models of acute and chronic demyelinating diseases improved their clinical course, pathology and remyelination. In the present study, we translated this therapeutic attempt to experimental allergic encephalomyelitis (EAE) in the non-human primate Callithrix Jacchus (marmoset). We report that short protocols of triiodothyronine treatment shifts the demyelination/remyelination balance toward remyelination, as assessed by morphology, immunohistochemistry and molecular biology, and improves the clinical course of the disease. We also found that severely ill animals display hypothyroidism and severe alteration of deiodinase and thyroid hormone receptor mRNAs expression in the spinal cord, which was completely corrected by thyroid hormone treatment. We therefore suggest that thyroid hormone treatment improves myelin sheath morphology in marmoset EAE, by correcting the dysfunction of thyroid hormone cellular effectors.

Triiodothyronine administration ameliorates the demyelination/remyelination ratio in a non-human primate model of multiple sclerosis by correcting tissue hypothyroidism.

LORENZINI, LUCA;FERNANDEZ CANALES, MARIA DE LAS MERCEDES;GIARDINO, LUCIANA;CALZA', LAURA
2011

Abstract

Remyelination failure is a key landmark in chronic progression of multiple sclerosis (MS), the most diffuse demyelinating disease in human, but the reasons for this are still unknown. It has been shown that thyroid hormone administration in the rodent models of acute and chronic demyelinating diseases improved their clinical course, pathology and remyelination. In the present study, we translated this therapeutic attempt to experimental allergic encephalomyelitis (EAE) in the non-human primate Callithrix Jacchus (marmoset). We report that short protocols of triiodothyronine treatment shifts the demyelination/remyelination balance toward remyelination, as assessed by morphology, immunohistochemistry and molecular biology, and improves the clinical course of the disease. We also found that severely ill animals display hypothyroidism and severe alteration of deiodinase and thyroid hormone receptor mRNAs expression in the spinal cord, which was completely corrected by thyroid hormone treatment. We therefore suggest that thyroid hormone treatment improves myelin sheath morphology in marmoset EAE, by correcting the dysfunction of thyroid hormone cellular effectors.
G. D’Intino; L. Lorenzini; M. Fernandez; A. Taglioni; G. Perretta; G. Del Vecchio; P. Villoslada; L. Giardino; L. Calzà
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/104789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact