Matrix-variate distributions represent a natural way for modeling random matrices. Realizations from random matrices are generated by the simultaneous observation of variables in different situations or locations, and are commonly arranged in three-way data structures. Among the matrix-variate distributions, the matrix normal density plays the same pivotal role as the multivariate normal distribution in the family of multivariate distributions. In this work we define and explore finite mixtures of matrix normals. An EM algorithm for the model estimation is developed and some useful properties are demonstrated. We finally show that the proposed mixture model can be a powerful tool for classifying three-way data both in supervised and unsupervised problems. A simulation study and some real examples are presented.

Finite mixtures of matrix normal distributions for classifying three-way data

VIROLI, CINZIA
2011

Abstract

Matrix-variate distributions represent a natural way for modeling random matrices. Realizations from random matrices are generated by the simultaneous observation of variables in different situations or locations, and are commonly arranged in three-way data structures. Among the matrix-variate distributions, the matrix normal density plays the same pivotal role as the multivariate normal distribution in the family of multivariate distributions. In this work we define and explore finite mixtures of matrix normals. An EM algorithm for the model estimation is developed and some useful properties are demonstrated. We finally show that the proposed mixture model can be a powerful tool for classifying three-way data both in supervised and unsupervised problems. A simulation study and some real examples are presented.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/104482
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 55
social impact