We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König’s Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multivalued function Sep and a natural notion of reducibility for multivalued functions, we obtain a computational counterpart of the subsystem of second-order arithmetic WKL0. We study analogies and differences between WKL0 and the class of Sep-computable multivalued functions. Extending work of Brattka, we show that a natural multivalued function associated with the Hahn-Banach Extension Theorem is Sep-complete.

Guido Gherardi, Alberto Marcone (2009). How incomputable is the separable Hahn-Banach Theorem?. NOTRE DAME JOURNAL OF FORMAL LOGIC, 50, 393-425 [10.1215/00294527-2009-018].

How incomputable is the separable Hahn-Banach Theorem?

GHERARDI, GUIDO;
2009

Abstract

We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König’s Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multivalued function Sep and a natural notion of reducibility for multivalued functions, we obtain a computational counterpart of the subsystem of second-order arithmetic WKL0. We study analogies and differences between WKL0 and the class of Sep-computable multivalued functions. Extending work of Brattka, we show that a natural multivalued function associated with the Hahn-Banach Extension Theorem is Sep-complete.
2009
Guido Gherardi, Alberto Marcone (2009). How incomputable is the separable Hahn-Banach Theorem?. NOTRE DAME JOURNAL OF FORMAL LOGIC, 50, 393-425 [10.1215/00294527-2009-018].
Guido Gherardi; Alberto Marcone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/104322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 42
social impact