Digital imaging is nowadays widely employed in the field of optical microscopy. One of the most apparent benefits consists in the possibility for the researcher to see the whole biological sample in one image, achieved by collecting all the parts being inspected. Common approaches work in batch mode and rely on known motorized x-y stage offsets of the microscope holder. Or alternatively, the methods are conceived just to provide visually pleasant mosaics off-line, that are often built by altering the photometric values or the geometric properties of the original component images. This work presents an incremental mosaicing method for optical microscopy imagery, compliant with on-line requirements and suitable even for nonmotorized microscopes. The resulting mosaics are very accurate and preserve the consistency of the original images so to be used for further global measurement steps. Nevertheless, the mosaics are visually pleasant so to be used for visual inspection as well. The experimental results obtained in different biological examinations confirm the efficacy of our approach.
L. Carozza, A. Bevilacqua, F. Piccinini (2011). An Incremental Method for Mosaicing of Optical Microscope Imagery. s.l : s.n [10.1109/CIBCB.2011.5948458].
An Incremental Method for Mosaicing of Optical Microscope Imagery
CAROZZA, LUDOVICO;BEVILACQUA, ALESSANDRO;PICCININI, FILIPPO
2011
Abstract
Digital imaging is nowadays widely employed in the field of optical microscopy. One of the most apparent benefits consists in the possibility for the researcher to see the whole biological sample in one image, achieved by collecting all the parts being inspected. Common approaches work in batch mode and rely on known motorized x-y stage offsets of the microscope holder. Or alternatively, the methods are conceived just to provide visually pleasant mosaics off-line, that are often built by altering the photometric values or the geometric properties of the original component images. This work presents an incremental mosaicing method for optical microscopy imagery, compliant with on-line requirements and suitable even for nonmotorized microscopes. The resulting mosaics are very accurate and preserve the consistency of the original images so to be used for further global measurement steps. Nevertheless, the mosaics are visually pleasant so to be used for visual inspection as well. The experimental results obtained in different biological examinations confirm the efficacy of our approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.