Most lipids in food exist as colloidal dispersions stabilized by surface active agents that slow down the gravitational separation of oil and water. The surface active agents in emulsion create an oil-water interface that has major impacts on the distribution of the components in foods that impact lipid oxidation. This includes location and reactivity of prooxidative factors such as transition metals, lipid hydroperoxides and minor lipid components and antioxidants such as free radical scavengers and metal chelators. Understanding of how the physical properties of the lipid-oil interface in food emulsions impacts the chemistry of lipid oxidation has lead to new strategies to inhibit oxidation such as creating charged surfaces that electrostatically repel metals and thick interfaces that inhibit lipid-prooxidant interactions. As food formulations continue to move towards inclusion of more polyunsaturated fatty acids and the use of traditional antioxidants becomes more limited due to increased consumer demand for all natural foods, it is important to have a better understanding of the mechanisms of lipid oxidation in foods dispersion so that novel antioxidant technologies can be developped.

Lipid oxidation in emulsified food products

CARDENIA, VLADIMIRO;
2010

Abstract

Most lipids in food exist as colloidal dispersions stabilized by surface active agents that slow down the gravitational separation of oil and water. The surface active agents in emulsion create an oil-water interface that has major impacts on the distribution of the components in foods that impact lipid oxidation. This includes location and reactivity of prooxidative factors such as transition metals, lipid hydroperoxides and minor lipid components and antioxidants such as free radical scavengers and metal chelators. Understanding of how the physical properties of the lipid-oil interface in food emulsions impacts the chemistry of lipid oxidation has lead to new strategies to inhibit oxidation such as creating charged surfaces that electrostatically repel metals and thick interfaces that inhibit lipid-prooxidant interactions. As food formulations continue to move towards inclusion of more polyunsaturated fatty acids and the use of traditional antioxidants becomes more limited due to increased consumer demand for all natural foods, it is important to have a better understanding of the mechanisms of lipid oxidation in foods dispersion so that novel antioxidant technologies can be developped.
2010
Oxidation in foods and beverages and antioxidant applications. Volume 2: Managment in different industry sectors
306
343
T. Waraho; V. Cardenia; E. A. Decker; D. J. McClements
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/103735
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 83
social impact