A gas chromatography/mass spectrometry (GC/MS) method for determination of nine N-nitrosamines (NAs) in water is described. Two ionization modes, electron impact (EI) and chemical ionization (CI) with methanol, as well as different ion analysis techniques, i.e. full scan, selected ion storage (SIS) and tandem mass spectrometry (MS/MS) were tested. Chemical ionization followed by SIS resulted the mass spectrometric method of choice, with detection limits in the range of 1–2 ng/L. Solid Phase Extraction (SPE) with coconut charcoal cartridges was applied to extract NAs from real samples, according EPA Method 521. Drinking water samples were collected from seven surface- and two groundwater treatment plants. Three surface water treatment plants were sampled before and after addition of O3/ClO2 to observe the effect of disinfection on NAs’ formation. N-nitrosodiethylamine (NDEA), n-nitrosodipropylamine (NDPA), n-nitrosomorpholine (NMOR) and n-nitrosodibutylamine (NDBA) were found up to concentrations exceeding three times the risk level of 10 ng/L set by the California Department of Public Health. Because dermal adsorption has been recently indicated as a new contamination route of exposure toNAs for people who practice swimming activity, water samples from five swimming pools in the Bologna (Italy) area were collected. N-nitrosopyrrolidine (NPYR) was detected in all samples at concentrations larger than 50 ng/L, likely as a disinfection by-product from the amino acid precursor proline, a main constituent of skin collagen.

Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry

POZZI, ROMINA;BOCCHINI, PAOLA;PINELLI, FRANCESCA;GALLETTI, GUIDO
2011

Abstract

A gas chromatography/mass spectrometry (GC/MS) method for determination of nine N-nitrosamines (NAs) in water is described. Two ionization modes, electron impact (EI) and chemical ionization (CI) with methanol, as well as different ion analysis techniques, i.e. full scan, selected ion storage (SIS) and tandem mass spectrometry (MS/MS) were tested. Chemical ionization followed by SIS resulted the mass spectrometric method of choice, with detection limits in the range of 1–2 ng/L. Solid Phase Extraction (SPE) with coconut charcoal cartridges was applied to extract NAs from real samples, according EPA Method 521. Drinking water samples were collected from seven surface- and two groundwater treatment plants. Three surface water treatment plants were sampled before and after addition of O3/ClO2 to observe the effect of disinfection on NAs’ formation. N-nitrosodiethylamine (NDEA), n-nitrosodipropylamine (NDPA), n-nitrosomorpholine (NMOR) and n-nitrosodibutylamine (NDBA) were found up to concentrations exceeding three times the risk level of 10 ng/L set by the California Department of Public Health. Because dermal adsorption has been recently indicated as a new contamination route of exposure toNAs for people who practice swimming activity, water samples from five swimming pools in the Bologna (Italy) area were collected. N-nitrosopyrrolidine (NPYR) was detected in all samples at concentrations larger than 50 ng/L, likely as a disinfection by-product from the amino acid precursor proline, a main constituent of skin collagen.
R. Pozzi; P. Bocchini; F. Pinelli; G.C. Galletti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/103470
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 64
social impact