Endowing the set of functional graphs (FGs) with the sum (disjoint union of graphs) and product (standard direct product on graphs) operations induces on FGs a structure of a commutative semiring R. The operations on R can be naturally extended to the set of univariate polynomials R[X] over R. This paper provides a polynomial time algorithm for deciding if equations of the type AX=B have solutions when A is just a single cycle and B a set of cycles of identical size. We also prove a similar complexity result for some variants of the previous equation.

Dennunzio, A., Formenti, E., Margara, L., Riva, S. (2025). On solving basic equations over the semiring of functional digraphs. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, vol. 27:3(6), 1-15 [10.46298/dmtcs.14590].

On solving basic equations over the semiring of functional digraphs

Margara, Luciano;
2025

Abstract

Endowing the set of functional graphs (FGs) with the sum (disjoint union of graphs) and product (standard direct product on graphs) operations induces on FGs a structure of a commutative semiring R. The operations on R can be naturally extended to the set of univariate polynomials R[X] over R. This paper provides a polynomial time algorithm for deciding if equations of the type AX=B have solutions when A is just a single cycle and B a set of cycles of identical size. We also prove a similar complexity result for some variants of the previous equation.
2025
Dennunzio, A., Formenti, E., Margara, L., Riva, S. (2025). On solving basic equations over the semiring of functional digraphs. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, vol. 27:3(6), 1-15 [10.46298/dmtcs.14590].
Dennunzio, Alberto; Formenti, Enrico; Margara, Luciano; Riva, Sara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1033990
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact