Bacterial multidrug resistance (MDR) poses a major threat to global health. The continued use of antibiotics, combined with genetic variations and exposure to nosocomial infections, has led to the selection and spread of multidrug-resistant bacteria. In recent years, photopharmacology has emerged as a strategy to combat MDR by enabling precise, light-controlled spatiotemporal modulation of the biological activity of photo-switchable compounds. Among different microbial species, Pseudomonas aeruginosa is a prominent bacterium involved in acute and chronic lung infections, posing a significant health concern, particularly among hospitalized and immunocompromised patients. The bacterium's capacity to form biofilms, a key factor in the development of MDR, is closely linked to the activity of the virulence factor LecB, a carbohydrate-binding protein with a well-documented role in biofilm formation. In this study, we report the design, synthesis and biological evaluation of two novel photoswitchable LecB modulators, photofucose-1 and photofucose-2. Isothermal Titration Calorimetry (ITC) analysis revealed that photofucose-2 binds LecB with high affinity, exhibiting a distinct difference in dissociation constants (Kd) between its cis and trans isomers. Moreover, we determined the X-ray crystal structure of the LecB-photofucose-2 complex, offering insights into its binding mechanism. These findings lay the groundwork for the rational, structure-based design of novel light-responsive compounds targeting LecB and represent a potential new avenue in the development of innovative strategies to combat bacterial resistance.

Bhattacharya, S., Tempra, G., Colleoni, A., Matera, C., Castagna, R., Parisini, E. (2025). Synthesis, photochemical and biological evaluation of novel photoswitchable glycomimetic ligands of Pseudomonas aeruginosa LecB. RSC ADVANCES, 15(58), 49796-49808 [10.1039/d5ra06897e].

Synthesis, photochemical and biological evaluation of novel photoswitchable glycomimetic ligands of Pseudomonas aeruginosa LecB

Parisini, Emilio
2025

Abstract

Bacterial multidrug resistance (MDR) poses a major threat to global health. The continued use of antibiotics, combined with genetic variations and exposure to nosocomial infections, has led to the selection and spread of multidrug-resistant bacteria. In recent years, photopharmacology has emerged as a strategy to combat MDR by enabling precise, light-controlled spatiotemporal modulation of the biological activity of photo-switchable compounds. Among different microbial species, Pseudomonas aeruginosa is a prominent bacterium involved in acute and chronic lung infections, posing a significant health concern, particularly among hospitalized and immunocompromised patients. The bacterium's capacity to form biofilms, a key factor in the development of MDR, is closely linked to the activity of the virulence factor LecB, a carbohydrate-binding protein with a well-documented role in biofilm formation. In this study, we report the design, synthesis and biological evaluation of two novel photoswitchable LecB modulators, photofucose-1 and photofucose-2. Isothermal Titration Calorimetry (ITC) analysis revealed that photofucose-2 binds LecB with high affinity, exhibiting a distinct difference in dissociation constants (Kd) between its cis and trans isomers. Moreover, we determined the X-ray crystal structure of the LecB-photofucose-2 complex, offering insights into its binding mechanism. These findings lay the groundwork for the rational, structure-based design of novel light-responsive compounds targeting LecB and represent a potential new avenue in the development of innovative strategies to combat bacterial resistance.
2025
Bhattacharya, S., Tempra, G., Colleoni, A., Matera, C., Castagna, R., Parisini, E. (2025). Synthesis, photochemical and biological evaluation of novel photoswitchable glycomimetic ligands of Pseudomonas aeruginosa LecB. RSC ADVANCES, 15(58), 49796-49808 [10.1039/d5ra06897e].
Bhattacharya, Shapla; Tempra, Giorgia; Colleoni, Alessio; Matera, Carlo; Castagna, Rossella; Parisini, Emilio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1033764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact