Bike Sharing Systems (BSS) represent a sustainable and efficient urban transportation solution. A major challenge in BSS is repositioning bikes to avoid shortage events when users encounter empty or full bike lockers. Existing algorithms unrealistically rely on precise demand forecasts and tend to overlook substantial operational costs associated with reallocations. This paper introduces a novel Cost-aware Adaptive Bike Repositioning Agent (CABRA), which harnesses advanced deep reinforcement learning techniques in dock-based BSS. By analyzing demand patterns, CABRA learns adaptive repositioning strategies aimed at reducing shortages and enhancing truck route planning efficiency, significantly lowering operational costs. We perform an extensive experimental evaluation of CABRA utilizing real-world data from Dublin, London, Paris, and New York. The reported results show that CABRA achieves operational efficiency that outperforms or matches very challenging baselines, obtaining a significant cost reduction. Its performance on the largest city comprising 1765 docking stations highlights the efficiency and scalability of the proposed solution even when applied to BSS with a great number of docking stations.

Staffolani, A., Darvariu, V., Bellavista, P., Musolesi, M. (2025). A Cost-Aware Adaptive Bike Repositioning Agent Using Deep Reinforcement Learning. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 26(4), 4923-4933 [10.1109/tits.2025.3535915].

A Cost-Aware Adaptive Bike Repositioning Agent Using Deep Reinforcement Learning

Staffolani, Alessandro;Bellavista, Paolo;Musolesi, Mirco
2025

Abstract

Bike Sharing Systems (BSS) represent a sustainable and efficient urban transportation solution. A major challenge in BSS is repositioning bikes to avoid shortage events when users encounter empty or full bike lockers. Existing algorithms unrealistically rely on precise demand forecasts and tend to overlook substantial operational costs associated with reallocations. This paper introduces a novel Cost-aware Adaptive Bike Repositioning Agent (CABRA), which harnesses advanced deep reinforcement learning techniques in dock-based BSS. By analyzing demand patterns, CABRA learns adaptive repositioning strategies aimed at reducing shortages and enhancing truck route planning efficiency, significantly lowering operational costs. We perform an extensive experimental evaluation of CABRA utilizing real-world data from Dublin, London, Paris, and New York. The reported results show that CABRA achieves operational efficiency that outperforms or matches very challenging baselines, obtaining a significant cost reduction. Its performance on the largest city comprising 1765 docking stations highlights the efficiency and scalability of the proposed solution even when applied to BSS with a great number of docking stations.
2025
Staffolani, A., Darvariu, V., Bellavista, P., Musolesi, M. (2025). A Cost-Aware Adaptive Bike Repositioning Agent Using Deep Reinforcement Learning. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 26(4), 4923-4933 [10.1109/tits.2025.3535915].
Staffolani, Alessandro; Darvariu, Victor-Alexandru; Bellavista, Paolo; Musolesi, Mirco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1033744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact