Bike-sharing services contribute to reducing emissions and conserving natural resources within urban transportation systems. They also promote public health by encouraging physical activity and generate economic benefits through shorter travel times, lower transportation costs, and decreased demand for parking infrastructure. This paper examines the use of shared micro-mobility services in the Italian cities of Florence and Bologna, based on an analysis of GPS origin–destination data and associated temporal coordinates provided by the RideMovi company. Given the still-limited number of studies on free-floating and electric-scooter-sharing systems, the objective of this work is to quantify the performance of electric bikes and e-scooters in bike-sharing schemes and compare it to traditional, muscular bikes. Trips were reconstructed starting from GPS data of origin and destination of the trip with a shortest path criteria that considers the availability of bike lanes. Results show that e-bikes are from 22 to 26% faster on average with respect to muscular bikes, extending trip range in Bologna but not in Florence. Electric modes attract more users than traditional bikes, e-bikes have from 40 to 128% higher daily turnover in Bologna and Florence and e-scooters from 33 to 62% higher in Florence with respect to traditional bikes. Overall, turnover is fairly low, with less than two trips per vehicle per day. The performance is measured in terms of trip duration, speed, and distance. Further characteristics such as daily turnover by transport mode are investigated and compared. Finally, spatial analysis was conducted to observe demand asymmetries in the two case studies. The results aim to support planners and operators in designing and managing more efficient and user-oriented services.

Bernieri, G., Schweizer, J., Rupi, F. (2025). Electric Bikes and Scooters Versus Muscular Bikes in Free-Floating Shared Services: Reconstructing Trips with GPS Data from Florence and Bologna, Italy. SUSTAINABILITY, 17(24), 1-32 [10.3390/su172411153].

Electric Bikes and Scooters Versus Muscular Bikes in Free-Floating Shared Services: Reconstructing Trips with GPS Data from Florence and Bologna, Italy

Bernieri, Giacomo
Primo
Formal Analysis
;
Schweizer, Joerg
Secondo
Software
;
Rupi, Federico
Ultimo
Supervision
2025

Abstract

Bike-sharing services contribute to reducing emissions and conserving natural resources within urban transportation systems. They also promote public health by encouraging physical activity and generate economic benefits through shorter travel times, lower transportation costs, and decreased demand for parking infrastructure. This paper examines the use of shared micro-mobility services in the Italian cities of Florence and Bologna, based on an analysis of GPS origin–destination data and associated temporal coordinates provided by the RideMovi company. Given the still-limited number of studies on free-floating and electric-scooter-sharing systems, the objective of this work is to quantify the performance of electric bikes and e-scooters in bike-sharing schemes and compare it to traditional, muscular bikes. Trips were reconstructed starting from GPS data of origin and destination of the trip with a shortest path criteria that considers the availability of bike lanes. Results show that e-bikes are from 22 to 26% faster on average with respect to muscular bikes, extending trip range in Bologna but not in Florence. Electric modes attract more users than traditional bikes, e-bikes have from 40 to 128% higher daily turnover in Bologna and Florence and e-scooters from 33 to 62% higher in Florence with respect to traditional bikes. Overall, turnover is fairly low, with less than two trips per vehicle per day. The performance is measured in terms of trip duration, speed, and distance. Further characteristics such as daily turnover by transport mode are investigated and compared. Finally, spatial analysis was conducted to observe demand asymmetries in the two case studies. The results aim to support planners and operators in designing and managing more efficient and user-oriented services.
2025
Bernieri, G., Schweizer, J., Rupi, F. (2025). Electric Bikes and Scooters Versus Muscular Bikes in Free-Floating Shared Services: Reconstructing Trips with GPS Data from Florence and Bologna, Italy. SUSTAINABILITY, 17(24), 1-32 [10.3390/su172411153].
Bernieri, Giacomo; Schweizer, Joerg; Rupi, Federico
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1032910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact