Metabarcoding is a highly efficient molecular technique that provides large species occurrence datasets. However, it presents a major limitation as only presence/absence of a species, not abundance, is detectable. Therefore, metabarcoding data requires the use of statistical tools designed for multivariate binary data. We aim to develop a model-based clustering strategy for metabarcoding data. Following a comparison of the methods from the literature, we propose to investigate an extension towards the inclusion of environmental covariates that often accompany occurrence data. In summary, this project seeks to maximize the utility of metabarcoding data with a context-appropriate clustering technique.

Ferrari, L., Franco-Villoria, M., Page, G.L., Ventrucci, M., Laini, A. (2025). Clustering metabarcoding data: a model-based approach. Limerick City.

Clustering metabarcoding data: a model-based approach

Ferrari Luisa
;
Page Garritt;Ventrucci Massimo;
2025

Abstract

Metabarcoding is a highly efficient molecular technique that provides large species occurrence datasets. However, it presents a major limitation as only presence/absence of a species, not abundance, is detectable. Therefore, metabarcoding data requires the use of statistical tools designed for multivariate binary data. We aim to develop a model-based clustering strategy for metabarcoding data. Following a comparison of the methods from the literature, we propose to investigate an extension towards the inclusion of environmental covariates that often accompany occurrence data. In summary, this project seeks to maximize the utility of metabarcoding data with a context-appropriate clustering technique.
2025
Proceedings of the 39th International Workshop on Statistical Modelling
523
526
Ferrari, L., Franco-Villoria, M., Page, G.L., Ventrucci, M., Laini, A. (2025). Clustering metabarcoding data: a model-based approach. Limerick City.
Ferrari, Luisa; Franco-Villoria, Maria; Page, Garritt Leland; Ventrucci, Massimo; Laini, Alex
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1031930
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact