Let A(n) be the von Mangoldt function, let n ≥ 2 be an integer and let RG(n; q,a,b):= m1+m2=nm1amodqm2bmodqA(m1)A(m2) be the counting function for the Goldbach numbers with summands in arithmetic progression modulo a common integer q. We prove an asymptotic formula for the weighted average, with Cesàro weight of order k > 1, with k , of this function. Our result is uniform in a suitable range for q.
Cantarini, M., Gambini, A., Zaccagnini, A. (2021). Cesàro averages for Goldbach representations with summands in arithmetic progressions. INTERNATIONAL JOURNAL OF NUMBER THEORY, 17(10), 2379-2393 [10.1142/S1793042121500937].
Cesàro averages for Goldbach representations with summands in arithmetic progressions
Gambini A.
;
2021
Abstract
Let A(n) be the von Mangoldt function, let n ≥ 2 be an integer and let RG(n; q,a,b):= m1+m2=nm1amodqm2bmodqA(m1)A(m2) be the counting function for the Goldbach numbers with summands in arithmetic progression modulo a common integer q. We prove an asymptotic formula for the weighted average, with Cesàro weight of order k > 1, with k , of this function. Our result is uniform in a suitable range for q.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


