We continue our investigations on the average number of representations of a large positive integer as a sum of given powers of prime numbers. The average is taken over a "short" interval, whose admissible length depends on whether or not we assume the Riemann Hypothesis.

Cantarini, M., Gambini, A., Zaccagnini, A. (2020). A note on an average additive problem with prime numbers. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 63(2), 215-226 [10.7169/facm/1856].

A note on an average additive problem with prime numbers

Gambini A.
;
2020

Abstract

We continue our investigations on the average number of representations of a large positive integer as a sum of given powers of prime numbers. The average is taken over a "short" interval, whose admissible length depends on whether or not we assume the Riemann Hypothesis.
2020
Cantarini, M., Gambini, A., Zaccagnini, A. (2020). A note on an average additive problem with prime numbers. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 63(2), 215-226 [10.7169/facm/1856].
Cantarini, M.; Gambini, A.; Zaccagnini, A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1031911
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact