We investigate the average number of representations of a positive integer as the sum of k + 1 perfect k-th powers of primes. We extend recent results of Languasco and the third author, which dealt with the case k = 2 and k = 3, respectively. We use the same technique to study the corresponding problem for sums of just k perfect k-th powers of primes.

Cantarini, M., Gambini, A., Zaccagnini, A. (2020). On the average number of representations of an integer as a sum of like prime powers. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 148(4), 1499-1508.

On the average number of representations of an integer as a sum of like prime powers

A. Gambini
;
2020

Abstract

We investigate the average number of representations of a positive integer as the sum of k + 1 perfect k-th powers of primes. We extend recent results of Languasco and the third author, which dealt with the case k = 2 and k = 3, respectively. We use the same technique to study the corresponding problem for sums of just k perfect k-th powers of primes.
2020
Cantarini, M., Gambini, A., Zaccagnini, A. (2020). On the average number of representations of an integer as a sum of like prime powers. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 148(4), 1499-1508.
Cantarini, M.; Gambini, A.; Zaccagnini, A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1031875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact