Interval data proved to be a useful coding in big data applications since many individuals can be collapsed into a single unit, so that each cell of the table contains a bounded interval. This contribution presents the Principal Component Analysis (PCA) for interval-valued data based on midpoints and radii approach, where the symbolic standardization is used, along with an ad-hoc Procrustean rotation.

Schisa, V., Iodice D'Enza, A., Palumbo, F. (2022). Dimensionality reduction and visualization for interval-valued data via midpoints-ranges principal component analysis.

Dimensionality reduction and visualization for interval-valued data via midpoints-ranges principal component analysis

Viviana Schisa
Investigation
;
2022

Abstract

Interval data proved to be a useful coding in big data applications since many individuals can be collapsed into a single unit, so that each cell of the table contains a bounded interval. This contribution presents the Principal Component Analysis (PCA) for interval-valued data based on midpoints and radii approach, where the symbolic standardization is used, along with an ad-hoc Procrustean rotation.
2022
SIS 2022. 51st Scientific Meeting of the Italian Statistical Society. Book of the Short Papers
1239
1244
Schisa, V., Iodice D'Enza, A., Palumbo, F. (2022). Dimensionality reduction and visualization for interval-valued data via midpoints-ranges principal component analysis.
Schisa, Viviana; Iodice D'Enza, Alfonso; Palumbo, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact