Global warming, anthropogenic pressure, and urban expansion at the expense of green spaces are leading to an increase in the incidence of urban heat islands, creating discomfort and health issue for citizens. This present research aimed at quantifying the impact of nature-based solutions to support decision-making processes in sustainable energy action plans. A simple method is provided, linking applied thermodynamics to physics-informed modeling of urban built-up and green areas, high-resolution climate models at urban scale, greenery modeling, spatial georeferencing techniques for energy, and entropy exchanges evaluation in urban built-up areas, with and without vegetation. This allows the outdoor climate conditions and thermo-hygrometric well-being to improve, reducing the workload of cooling plant-systems in buildings and entropy flux to the environment. The finalization and post-processing of obtained results allows the definition of entropy footprints. The main findings show a decrease in greenery’s contribution for different scenarios, referring to a different climatological dataset, but an increase in entropy that becomes higher for the scenario with higher emissions. The comparison between the entropy footprint values for different urban zones can be a useful support to public administrations, stakeholders, and local governments for planning proactive resilient cities and anthropogenic impact reduction and climate change mitigation.
Balocco, C., Pierucci, G., Baia, M., Borghi, C., Francini, S., Chirici, G., et al. (2025). Energy Sustainability of Urban Areas by Green Systems: Applied Thermodynamic Entropy and Strategic Modeling Means. ATMOSPHERE, 16(8), 1-24 [10.3390/atmos16080975].
Energy Sustainability of Urban Areas by Green Systems: Applied Thermodynamic Entropy and Strategic Modeling Means
Francini S.;
2025
Abstract
Global warming, anthropogenic pressure, and urban expansion at the expense of green spaces are leading to an increase in the incidence of urban heat islands, creating discomfort and health issue for citizens. This present research aimed at quantifying the impact of nature-based solutions to support decision-making processes in sustainable energy action plans. A simple method is provided, linking applied thermodynamics to physics-informed modeling of urban built-up and green areas, high-resolution climate models at urban scale, greenery modeling, spatial georeferencing techniques for energy, and entropy exchanges evaluation in urban built-up areas, with and without vegetation. This allows the outdoor climate conditions and thermo-hygrometric well-being to improve, reducing the workload of cooling plant-systems in buildings and entropy flux to the environment. The finalization and post-processing of obtained results allows the definition of entropy footprints. The main findings show a decrease in greenery’s contribution for different scenarios, referring to a different climatological dataset, but an increase in entropy that becomes higher for the scenario with higher emissions. The comparison between the entropy footprint values for different urban zones can be a useful support to public administrations, stakeholders, and local governments for planning proactive resilient cities and anthropogenic impact reduction and climate change mitigation.| File | Dimensione | Formato | |
|---|---|---|---|
|
atmosphere-16-00975-v2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.59 MB
Formato
Adobe PDF
|
3.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


