This paper introduces a novel optimization framework for Network Functions Virtualization (NFV) that addresses the efficient implementation of end-to-end service requests in physical networks. Our approach characterizes each server node by a reliability function reflecting its computational load, which aids in balancing workloads and mitigating congestion. By optimizing the reliability metrics along the route, our approach ensures robust end-to-end service quality. We formulate the NFV deployment problem as a non-convex mixed-integer nonlinear programming (MINLP) model aimed at minimizing both deployment and operational costs while maximizing resource utilization. Given the NP-hard nature of the problem, we develop efficient linearization techniques and bounding schemes, using also dynamic programming, to convert the formulation into a tractable mixed-integer linear programming (MILP) model. Additionally, a cutting-plane-based heuristic with a warm-start strategy is proposed to further accelerate convergence. Experimental evaluations on real-world network topologies demonstrate that our framework offers scalable and cost-effective solutions compared to existing approaches.

Raayatpanah, M.A., Weise, T., Elias, J., Martignon, F., Pimpinella, A. (2025). A Mixed-Integer Linear Programming Approach for Congestion-Aware Optimized NFV Deployment. Institute of Electrical and Electronics Engineers Inc. [10.23919/wiopt66569.2025.11123231].

A Mixed-Integer Linear Programming Approach for Congestion-Aware Optimized NFV Deployment

Elias, Jocelyne;
2025

Abstract

This paper introduces a novel optimization framework for Network Functions Virtualization (NFV) that addresses the efficient implementation of end-to-end service requests in physical networks. Our approach characterizes each server node by a reliability function reflecting its computational load, which aids in balancing workloads and mitigating congestion. By optimizing the reliability metrics along the route, our approach ensures robust end-to-end service quality. We formulate the NFV deployment problem as a non-convex mixed-integer nonlinear programming (MINLP) model aimed at minimizing both deployment and operational costs while maximizing resource utilization. Given the NP-hard nature of the problem, we develop efficient linearization techniques and bounding schemes, using also dynamic programming, to convert the formulation into a tractable mixed-integer linear programming (MILP) model. Additionally, a cutting-plane-based heuristic with a warm-start strategy is proposed to further accelerate convergence. Experimental evaluations on real-world network topologies demonstrate that our framework offers scalable and cost-effective solutions compared to existing approaches.
2025
Proceedings of the International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt
1
8
Raayatpanah, M.A., Weise, T., Elias, J., Martignon, F., Pimpinella, A. (2025). A Mixed-Integer Linear Programming Approach for Congestion-Aware Optimized NFV Deployment. Institute of Electrical and Electronics Engineers Inc. [10.23919/wiopt66569.2025.11123231].
Raayatpanah, Mohammad Ali; Weise, Thomas; Elias, Jocelyne; Martignon, Fabio; Pimpinella, Andrea
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029974
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact