The calculation of the curvature in Volume of Fluid (VOF) methods is still a challenge, and common approaches involve curve or surface fitting based on volume fractions. In this work, we explore an alternative approach for curvature computation in VOF simulations employing machine learning. The neural network establishes a correlation between curvature and height function values so that the local interface curvature can be efficiently predicted. We compare the trained neural network to the standard Height Function method to assess its performance and robustness.

Cervone, A., Manservisi, S., Scardovelli, R., Sirotti, L. (2025). A Machine Learning Approach for Curvature Computation Leveraging Volume of Fluid (VOF) Height Function. American Institute of Physics [10.1063/5.0286349].

A Machine Learning Approach for Curvature Computation Leveraging Volume of Fluid (VOF) Height Function

Cervone A.;Manservisi S.;Scardovelli R.;Sirotti L.
2025

Abstract

The calculation of the curvature in Volume of Fluid (VOF) methods is still a challenge, and common approaches involve curve or surface fitting based on volume fractions. In this work, we explore an alternative approach for curvature computation in VOF simulations employing machine learning. The neural network establishes a correlation between curvature and height function values so that the local interface curvature can be efficiently predicted. We compare the trained neural network to the standard Height Function method to assess its performance and robustness.
2025
AIP Conference Proceedings
1
4
Cervone, A., Manservisi, S., Scardovelli, R., Sirotti, L. (2025). A Machine Learning Approach for Curvature Computation Leveraging Volume of Fluid (VOF) Height Function. American Institute of Physics [10.1063/5.0286349].
Cervone, A.; Manservisi, S.; Scardovelli, R.; Sirotti, L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029839
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact