The Mittag-Leffler function is universally acclaimed as the Queen function of fractional calculus. The aim of this work is to survey the key results and applications emerging from the three-parameter generalization of this function, known as the Prabhakar function. Specifically, after reviewing key historical events that led to the discovery and modern development of this peculiar function, we discuss how the latter allows one to introduce an enhanced scheme for fractional calculus. Then, we summarize the progress in the application of this new general framework to physics and renewal processes. We also provide a collection of results on the numerical evaluation of the Prabhakar function.

Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., et al. (2020). A practical guide to Prabhakar fractional calculus. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 23(1), 9-54 [10.1515/fca-2020-0002].

A practical guide to Prabhakar fractional calculus

Andrea Giusti
;
2020

Abstract

The Mittag-Leffler function is universally acclaimed as the Queen function of fractional calculus. The aim of this work is to survey the key results and applications emerging from the three-parameter generalization of this function, known as the Prabhakar function. Specifically, after reviewing key historical events that led to the discovery and modern development of this peculiar function, we discuss how the latter allows one to introduce an enhanced scheme for fractional calculus. Then, we summarize the progress in the application of this new general framework to physics and renewal processes. We also provide a collection of results on the numerical evaluation of the Prabhakar function.
2020
Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., et al. (2020). A practical guide to Prabhakar fractional calculus. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 23(1), 9-54 [10.1515/fca-2020-0002].
Giusti, Andrea; Colombaro, Ivano; Garra, Roberto; Garrappa, Roberto; Polito, Federico; Popolizio, Marina; Mainardi, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 167
  • ???jsp.display-item.citation.isi??? ND
social impact