Several approaches to the formulation of a fractional theory of calculus of “variable order” have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view on the problem, originally proposed by G. Scarpi in the early seventies, based on a naive modification of the representation in the Laplace domain of standard kernels functions involved in (constant-order) fractional calculus. We frame Scarpi's ideas within recent theory of General Fractional Derivatives and Integrals, that mostly rely on the Sonine condition, and investigate the main properties of the emerging variable-order operators. Then, taking advantage of powerful and easy-to-use numerical methods for the inversion of Laplace transforms of functions defined in the Laplace domain, we discuss some practical applications of the variable-order Scarpi integral and derivative.

Garrappa, R., Giusti, A., Mainardi, F. (2021). Variable-order fractional calculus: A change of perspective. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION, 102, 1-16 [10.1016/j.cnsns.2021.105904].

Variable-order fractional calculus: A change of perspective

Giusti, Andrea;
2021

Abstract

Several approaches to the formulation of a fractional theory of calculus of “variable order” have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view on the problem, originally proposed by G. Scarpi in the early seventies, based on a naive modification of the representation in the Laplace domain of standard kernels functions involved in (constant-order) fractional calculus. We frame Scarpi's ideas within recent theory of General Fractional Derivatives and Integrals, that mostly rely on the Sonine condition, and investigate the main properties of the emerging variable-order operators. Then, taking advantage of powerful and easy-to-use numerical methods for the inversion of Laplace transforms of functions defined in the Laplace domain, we discuss some practical applications of the variable-order Scarpi integral and derivative.
2021
Garrappa, R., Giusti, A., Mainardi, F. (2021). Variable-order fractional calculus: A change of perspective. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION, 102, 1-16 [10.1016/j.cnsns.2021.105904].
Garrappa, Roberto; Giusti, Andrea; Mainardi, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029773
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 74
social impact