We present a novel definition of variable-order fractional Laplacian on Rn based on a natural generalization of the standard Riesz potential. Our definition holds for values of the fractional parameter spanning the entire open set (0, n/2). We then discuss some properties of the fractional Poisson’s equation involving this operator and we compute the corresponding Green’s function, for which we provide some instructive examples for specific problems.

Darve, E., D'Elia, M., Garrappa, R., Giusti, A., Rubio, N.L. (2022). On the fractional Laplacian of variable order. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 25(1), 15-28 [10.1007/s13540-021-00003-1].

On the fractional Laplacian of variable order

Giusti, Andrea
;
2022

Abstract

We present a novel definition of variable-order fractional Laplacian on Rn based on a natural generalization of the standard Riesz potential. Our definition holds for values of the fractional parameter spanning the entire open set (0, n/2). We then discuss some properties of the fractional Poisson’s equation involving this operator and we compute the corresponding Green’s function, for which we provide some instructive examples for specific problems.
2022
Darve, E., D'Elia, M., Garrappa, R., Giusti, A., Rubio, N.L. (2022). On the fractional Laplacian of variable order. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 25(1), 15-28 [10.1007/s13540-021-00003-1].
Darve, Eric; D'Elia, Marta; Garrappa, Roberto; Giusti, Andrea; Rubio, Natalia L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact