We prove the local boundedness of local weak solutions to the parabolic equation \[ \partial_{t}u\,=\,\sum_{i=1}^{n}\partial_{x_{i}}\left[(\vert u_{x_{i}}\vert-\delta_{i})_{+}^{p-1}\frac{u_{x_{i}}}{\vert u_{x_{i}}\vert}\right]\,\,\,\,\,\,\,\,\,\,\mathrm{in}\,\,\,\Omega_{T}=\Omega\times(0,T]\,, \] where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with $n\geq2$, $p\geq2$, $\delta_{1},\ldots,\delta_{n}$ are non-negative numbers and $\left(\,\cdot\,\right)_{+}$ denotes the positive part. The main novelty here is that the above equation combines an orthotropic structure with a strongly degenerate behavior. The core result of this paper thus extends a classical boundedness theorem, originally proved for the parabolic $p$-Laplacian, to a widely degenerate anisotropic setting. As a byproduct, we also obtain the local boundedness of local weak solutions to the isotropic counterpart of the above equation.

Ambrosio, P., Ciani, S. (2025). Local boundedness for weak solutions to strongly degenerate orthotropic parabolic equations. RICERCHE DI MATEMATICA, N.D., N/A-N/A [10.1007/s11587-025-01029-w].

Local boundedness for weak solutions to strongly degenerate orthotropic parabolic equations

Ambrosio, Pasquale
Primo
;
Ciani, Simone
Secondo
2025

Abstract

We prove the local boundedness of local weak solutions to the parabolic equation \[ \partial_{t}u\,=\,\sum_{i=1}^{n}\partial_{x_{i}}\left[(\vert u_{x_{i}}\vert-\delta_{i})_{+}^{p-1}\frac{u_{x_{i}}}{\vert u_{x_{i}}\vert}\right]\,\,\,\,\,\,\,\,\,\,\mathrm{in}\,\,\,\Omega_{T}=\Omega\times(0,T]\,, \] where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with $n\geq2$, $p\geq2$, $\delta_{1},\ldots,\delta_{n}$ are non-negative numbers and $\left(\,\cdot\,\right)_{+}$ denotes the positive part. The main novelty here is that the above equation combines an orthotropic structure with a strongly degenerate behavior. The core result of this paper thus extends a classical boundedness theorem, originally proved for the parabolic $p$-Laplacian, to a widely degenerate anisotropic setting. As a byproduct, we also obtain the local boundedness of local weak solutions to the isotropic counterpart of the above equation.
2025
Ambrosio, P., Ciani, S. (2025). Local boundedness for weak solutions to strongly degenerate orthotropic parabolic equations. RICERCHE DI MATEMATICA, N.D., N/A-N/A [10.1007/s11587-025-01029-w].
Ambrosio, Pasquale; Ciani, Simone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029433
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact