We study the optimal control of path-dependent piecewise deterministic processes. An appropriate dynamic programming principle is established. We prove that the associated value function is the unique minimax solution of the corresponding non-local path-dependent Hamilton–Jacobi–Bellman equation. This is the first well-posedness result for nonsmooth solutions of fully nonlinear non-local path-dependent partial differential equations.

Bandini, E., Keller, C. (2026). Non-local Hamilton–Jacobi–Bellman equations for the stochastic optimal control of path-dependent piecewise deterministic processes. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 192, 1-30 [10.1016/j.spa.2025.104813].

Non-local Hamilton–Jacobi–Bellman equations for the stochastic optimal control of path-dependent piecewise deterministic processes

Bandini, Elena;
2026

Abstract

We study the optimal control of path-dependent piecewise deterministic processes. An appropriate dynamic programming principle is established. We prove that the associated value function is the unique minimax solution of the corresponding non-local path-dependent Hamilton–Jacobi–Bellman equation. This is the first well-posedness result for nonsmooth solutions of fully nonlinear non-local path-dependent partial differential equations.
2026
Bandini, E., Keller, C. (2026). Non-local Hamilton–Jacobi–Bellman equations for the stochastic optimal control of path-dependent piecewise deterministic processes. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 192, 1-30 [10.1016/j.spa.2025.104813].
Bandini, Elena; Keller, Christian
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029106
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact