Shape sensing with optical fiber sensors is an emerging technology with broad applications across various fields. This study evaluates the metrological performance of shape sensing cables in the presence of fiber core failures, a critical issue in scenarios where cable replacement is impractical due to technological and economic constraints. The impact of core failure is quantified by comparing the uncertainty in key parameters, such as curvature and bending angle, between pristine and damaged cables through Monte Carlo simulations. Results indicate that while core failure degrades performance, shape reconstruction remains achievable. However, the reconstruction becomes sensitive to bending direction due to the loss of core symmetry. Additionally, simulations of how measurement noise propagates into uncertainty in the 3D shape reconstruction are carried out. Analysis of specific shapes, including a circle and a right-handed helix, shows that increasing the number of sensing cores significantly mitigates the adverse effects of core failure. The most notable improvement occurs when the number of cores is increased from four to five. These findings show how shape reconstruction is still possible even in the presence of core damage, and how this changes the behavior of the sensing process.

Falcetelli, F., Rossi, L., Di Sante, R., Bolognini, G. (2025). Uncertainty Analysis of Fiber Optic Shape Sensing Under Core Failure. SENSORS, 25(8), 1-21 [10.3390/s25082353].

Uncertainty Analysis of Fiber Optic Shape Sensing Under Core Failure

Falcetelli, Francesco
Co-primo
;
Di Sante, Raffaella;
2025

Abstract

Shape sensing with optical fiber sensors is an emerging technology with broad applications across various fields. This study evaluates the metrological performance of shape sensing cables in the presence of fiber core failures, a critical issue in scenarios where cable replacement is impractical due to technological and economic constraints. The impact of core failure is quantified by comparing the uncertainty in key parameters, such as curvature and bending angle, between pristine and damaged cables through Monte Carlo simulations. Results indicate that while core failure degrades performance, shape reconstruction remains achievable. However, the reconstruction becomes sensitive to bending direction due to the loss of core symmetry. Additionally, simulations of how measurement noise propagates into uncertainty in the 3D shape reconstruction are carried out. Analysis of specific shapes, including a circle and a right-handed helix, shows that increasing the number of sensing cores significantly mitigates the adverse effects of core failure. The most notable improvement occurs when the number of cores is increased from four to five. These findings show how shape reconstruction is still possible even in the presence of core damage, and how this changes the behavior of the sensing process.
2025
Falcetelli, F., Rossi, L., Di Sante, R., Bolognini, G. (2025). Uncertainty Analysis of Fiber Optic Shape Sensing Under Core Failure. SENSORS, 25(8), 1-21 [10.3390/s25082353].
Falcetelli, Francesco; Rossi, Leonardo; Di Sante, Raffaella; Bolognini, Gabriele
File in questo prodotto:
File Dimensione Formato  
Falcetelli et al. - 2025 - Uncertainty Analysis of Fiber Optic Shape Sensing .pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.96 MB
Formato Adobe PDF
4.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact