Context. Giant molecular clouds (GMCs) are the primary sites of star formation in galaxies. Their evolution, driven by the interplay of gravitational collapse, stellar feedback, and galactic dynamics, is key to understanding local star formation on GMC scales. However, tracking the full life cycle of GMCs across diverse galactic environments remains challenging and requires high-resolution hydrodynamical simulations and robust post-processing analysis. Aims. We aim to trace the complete life cycle of individual GMCs in high-resolution Milky Way- mass galaxy simulations to determine how different stellar feedback mechanisms and galactic-scale processes govern cloud lifetimes, mass evolution, and local star formation efficiency (SFE). Methods. We identified GMCs in simulated galaxies and tracked their evolution using cloud evolution trees. Via cloud evolution trees, we quantified the lifetimes and SFE of GMCs. We further applied our diagnostics to a suite of simulations with varying star formation and stellar feedback subgrid models and explored their impact together with galactic environments to the GMC life cycles. Results. Our analysis reveals that GMCs undergo dynamic evolution, characterized by continuous gas accretion, gravitational collapse, and star formation, followed by disruption due to stellar feedback. The accretion process sustains the gas content throughout most of the GMC life cycles, resulting in a positive correlation between GMC lifetimes and their maximum masses. The GMC lifetimes range from a few to several tens of million years, with two distinct dynamical modes: (1) GMCs near the galactic center experience strong tidal disturbances, prolonging their lifetimes when they remain marginally unbound; (2) those in the outer regions are less affected by tides, remain gravitationally bound, and evolve more rapidly. In all model variations, we observe that GMC-scale SFE correlates with the baryonic surface density of GMCs, consistent with previous studies of isolated GMCs. Additionally, we emphasize the critical role of galactic shear in regulating GMC-scale star formation and refine the correlation between local SFE and surface density by including its effects. These findings demonstrate how stellar feedback and galactic-scale dynamics jointly shape GMC-scale star formation in realistic galactic environments.

Ni, Y., Li, H., Vogelsberger, M., Sales, L.V., Marinacci, F., Torrey, P. (2025). The life cycle of giant molecular clouds in simulated Milky Way-mass galaxies. ASTRONOMY & ASTROPHYSICS, 699, 1-13 [10.1051/0004-6361/202554126].

The life cycle of giant molecular clouds in simulated Milky Way-mass galaxies

Marinacci, Federico;
2025

Abstract

Context. Giant molecular clouds (GMCs) are the primary sites of star formation in galaxies. Their evolution, driven by the interplay of gravitational collapse, stellar feedback, and galactic dynamics, is key to understanding local star formation on GMC scales. However, tracking the full life cycle of GMCs across diverse galactic environments remains challenging and requires high-resolution hydrodynamical simulations and robust post-processing analysis. Aims. We aim to trace the complete life cycle of individual GMCs in high-resolution Milky Way- mass galaxy simulations to determine how different stellar feedback mechanisms and galactic-scale processes govern cloud lifetimes, mass evolution, and local star formation efficiency (SFE). Methods. We identified GMCs in simulated galaxies and tracked their evolution using cloud evolution trees. Via cloud evolution trees, we quantified the lifetimes and SFE of GMCs. We further applied our diagnostics to a suite of simulations with varying star formation and stellar feedback subgrid models and explored their impact together with galactic environments to the GMC life cycles. Results. Our analysis reveals that GMCs undergo dynamic evolution, characterized by continuous gas accretion, gravitational collapse, and star formation, followed by disruption due to stellar feedback. The accretion process sustains the gas content throughout most of the GMC life cycles, resulting in a positive correlation between GMC lifetimes and their maximum masses. The GMC lifetimes range from a few to several tens of million years, with two distinct dynamical modes: (1) GMCs near the galactic center experience strong tidal disturbances, prolonging their lifetimes when they remain marginally unbound; (2) those in the outer regions are less affected by tides, remain gravitationally bound, and evolve more rapidly. In all model variations, we observe that GMC-scale SFE correlates with the baryonic surface density of GMCs, consistent with previous studies of isolated GMCs. Additionally, we emphasize the critical role of galactic shear in regulating GMC-scale star formation and refine the correlation between local SFE and surface density by including its effects. These findings demonstrate how stellar feedback and galactic-scale dynamics jointly shape GMC-scale star formation in realistic galactic environments.
2025
Ni, Y., Li, H., Vogelsberger, M., Sales, L.V., Marinacci, F., Torrey, P. (2025). The life cycle of giant molecular clouds in simulated Milky Way-mass galaxies. ASTRONOMY & ASTROPHYSICS, 699, 1-13 [10.1051/0004-6361/202554126].
Ni, Yang; Li, Hui; Vogelsberger, Mark; Sales, Laura V.; Marinacci, Federico; Torrey, Paul
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1028954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact