Trials were carried out to investigate the effects of light and temperature on C. rotundus seeds and tubers under two conditions: (i) in vitro and (ii) after sowing in soil. In the latter, seedling emergence was evaluated after sowing at increasing depths in different soil textures. While dormancy was evident in over 50% of the seeds, which also required light for germination, in contrast, tubers showed a significantly shorter period of dormancy that was independent of light. Seed burial strongly hindered seedling emergence, showing an “active” seed bank only in the shallowest soil layer (few mm). In contrast, tubers showed a marked ability to emerge from a depth exceeding 40 cm. Emergence capacity was found to be proportional to the size of the tubers, attributable to the greater energy reserves needed during autotrophic pre-emergence growth. Seedling emergence from both seeds and tubers, sown at increasing depths, was inhibited to a greater extent in a clay soil texture. A lower inhibitory effect was reported for sandy soils. Tuber vitality was significantly reduced or eliminated within a few days from progressive drying following exposure to solar rays during summer periods. Finally, the data were discussed within the context of planning the agronomic management of C. rotundus, in terms of soil tillage modalities, to ensure sustainable control of this strongly invasive and persistent weed.
Benvenuti, S. (2025). Agroecology of Cyperus rotundus: Emergence Dynamics of as a Tool for Sustainable Weed Management. SUSTAINABILITY, 17(21), 1-14 [10.3390/su17219543].
Agroecology of Cyperus rotundus: Emergence Dynamics of as a Tool for Sustainable Weed Management
Stefano Benvenuti
2025
Abstract
Trials were carried out to investigate the effects of light and temperature on C. rotundus seeds and tubers under two conditions: (i) in vitro and (ii) after sowing in soil. In the latter, seedling emergence was evaluated after sowing at increasing depths in different soil textures. While dormancy was evident in over 50% of the seeds, which also required light for germination, in contrast, tubers showed a significantly shorter period of dormancy that was independent of light. Seed burial strongly hindered seedling emergence, showing an “active” seed bank only in the shallowest soil layer (few mm). In contrast, tubers showed a marked ability to emerge from a depth exceeding 40 cm. Emergence capacity was found to be proportional to the size of the tubers, attributable to the greater energy reserves needed during autotrophic pre-emergence growth. Seedling emergence from both seeds and tubers, sown at increasing depths, was inhibited to a greater extent in a clay soil texture. A lower inhibitory effect was reported for sandy soils. Tuber vitality was significantly reduced or eliminated within a few days from progressive drying following exposure to solar rays during summer periods. Finally, the data were discussed within the context of planning the agronomic management of C. rotundus, in terms of soil tillage modalities, to ensure sustainable control of this strongly invasive and persistent weed.| File | Dimensione | Formato | |
|---|---|---|---|
|
sustainability-17-09543.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
7.16 MB
Formato
Adobe PDF
|
7.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


